1.直燃型溴化锂吸收式中央空调机组的制冷原理是怎样的?

2.请问溴化锂吸收式制冷机中冷媒水和冷却水分别什么作用?在哪工作?热交换器什么作用?

3.溴化锂吸收式制冷空调技术实用手册 全内容 知道的请告诉我 谢谢

空调用冷却塔内部构造_溴化锂空调冷却塔底座修理工事

溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。

为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。

可见溴化锂吸收式制冷机主要是由吸收器、发生器、冷凝器和蒸发器四部分组成的。

从吸收器出来的溴化锂稀溶液,由溶液泵(即发生器泵),升压经溶液热交换器,被发生器出来的高温浓溶液加热温度提高后,进入发生器。在发生器中受到传热管内热源蒸汽加热,溶液温度提高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。

单效溴化锂吸收式制冷机的热源蒸汽压力一般为0.098MPa(表压)。发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入凝凝器。冷凝器的传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。

积聚在冷凝器下部的冷剂水经节流后流入蒸发器内,因为冷凝器中的压力比蒸发器中的压力要高。如:当冷凝器温度为45℃时,冷凝压力为9580Pa(71.9mmHg);蒸发温度为5℃时,蒸发压力872Pa(6.45mmHg)。 U型管是起液封作用的,防止冷凝器中的蒸汽直接进入蒸发器。

冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。因蒸发器为喷淋式热交换器,喷啉量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发成低压的冷剂水蒸气。由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温冷媒水,达到制冷的目的。例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。

蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。中间溶液是由来自溶液热交换器放热降温后的浓溶液和吸收器液囊中的稀溶液混合得到的。为保证吸收过程的不断进行,需将吸收过程所放出的热量由传热管内的冷却水及时带走。中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收器底部液囊中,再由发生器泵送到发生器,如此循环不已。

由上述循环工作过程可见,吸收式制冷机与压缩式制冷机在获取冷量的原理上是相同的,都是利用高压液体制冷剂经节流阀(或U型管)节流降压后,在低压下蒸发来制取冷量,它们都有起同样作用的冷凝、蒸发和节流装置。而主要区别在于由低压冷剂蒸汽如何变成高压蒸汽所用的方法不同,压缩式制冷机是通过原动机驱动压缩机来实现的,而吸收式制冷机是通过吸收器,溶液泵和发生器等设备来实现的。

从吸收器出来的稀溶液温度较低,而稀溶液温度越低,则在发生器中需要更多热量。自发生器出来的浓溶液温度较高,而浓溶液温度越高,在吸收器中则要求更多的冷却水量。因此设置溶液交换器,由温度较高的浓溶液加热温度较低的稀溶液,这样既减少了发生器加热负荷,也减少了吸收器的冷却负荷,可谓一举两得。

溴化锂吸收式制冷机除了上述冷剂水和溴化锂溶液两个内部循环外,还有三个系统与外部相联,这就是:

①热源系统;

②冷却水系统;

③冷媒水系统。

热源蒸汽(或热水)通入发生器,在管内流过,加热管外溶液使其沸腾并蒸发出冷剂蒸汽,而热源蒸汽放出汽化潜热后凝结成水排出。一般情况下,应将该凝结水回收并送回锅炉加以利用。

在吸收器中溶液吸收来自蒸发器的低压冷剂蒸汽,是个放热过程。为使吸收过程连续进行下去,需不断加以冷却。在冷凝器中也需冷却水,以便将来自发生器的高压冷剂蒸汽变成冷剂水。冷却水先流经吸收器后,再流过冷凝器,出冷凝器的冷却水温度较高,一般是通入冷却水塔,降温后再打入吸收器循环使用。

来自用户的冷媒水通入蒸发器的管簇内,由于管外冷剂水的蒸发吸热,使冷媒水降温。制冷机的工作目的是获得低温(如7℃)的冷媒水,冷媒水就是冷量的“媒体”。

直燃型溴化锂吸收式中央空调机组的制冷原理是怎样的?

单从能源消耗上来说,不节能。但是有可能省钱。

溴化锂空调,每制1千瓦冷,冷却塔要散1.8千瓦热量。多出来的0.8千瓦热量就是消耗的能量。

普通电氟空调,每制1千瓦冷量,冷却塔要散1.25千瓦左右的热量,多出来的0.25的热量,就是消耗的能量。

或者这么说,用1千瓦热量的煤去发电,发电厂的热效率是35%,能发电0.35千瓦。0.35千瓦的电能去制冷,按1:4的能效比算,能制冷1.4千瓦。

用1千瓦热量的煤去烧溴化锂,也按35%的热效率算,能被利用去制冷的热量0.35千瓦。按1:1.2的能效比算,能制冷0.42千瓦。

就算1千瓦的煤去烧溴化锂,热效率100%,也只能制冷1.2千瓦。

也就是说,若用同样的燃料去发电,再用电去制冷,也比直接烧溴化锂制的冷量多,所以溴化锂不节能。

但是,若是有没用的余热废热,利用溴化锂来制冷,就应该算是节能环保。

有意思的是,有大量余热废热的发电厂,普遍用电氟制冷,原因在于溴化锂机组维修麻烦,冷量衰减大。若在电力供应不足的地方或电力增容不方便的地方,溴化锂空调还是不错的选择。

另外溴化锂空调自带锅炉,现在国家不让上小锅炉,要集中供热。溴化锂空调可以解决一些宾馆的热水问题,所以不少宾馆还是在使用溴化锂空调。

请问溴化锂吸收式制冷机中冷媒水和冷却水分别什么作用?在哪工作?热交换器什么作用?

直燃型溴化锂吸收式中央空调器组是一种主要以燃气或燃油为能源,用动力驱动的空调系统。主要由燃气燃烧室、高温发生器、低温发生器、冷凝器、蒸发器、溶液泵、冷却塔风机、燃烧器风机、冷却水泵、冷冻水泵、溶液泵、制冷剂泵等组成。其外形如图5-25所示。

图5-25 直燃型溴化锂吸收式中央空调器

工作时,高温发生器内的溴化锂稀溶经燃烧器加热后,产生出水蒸汽;水蒸汽再对低温发生器内溴化锂溶液进行加热,即产生更多的水蒸汽,然后水蒸汽进入冷凝器冷凝成水;水经节流后进入蒸发器吸收热量变成蒸汽,低压水蒸汽被吸收器内的溴化锂溶液吸收后,使其溴化锂溶液变稀,并由溶液泵送入低温发生器,再产生水蒸汽,如此不断循环。冷凝器内的冷却水来自冷却器,蒸发器内的冷冻水来自空调房间的风机盘管机组。

直燃型溴化锂吸收式冷(热)水机组是在蒸汽型溴化锂冷水机组的基本上,增加热源设备而发展起来的,因此除了具有蒸汽型溴化锂固有的特点外,最突出的特点是由于制冷主机与燃烧设备一体化,可根据负荷变化实现燃烧调节,提高了能量的利用率。

溴化锂吸收式制冷空调技术实用手册 全内容 知道的请告诉我 谢谢

图为蒸汽两效溴化锂吸收式制冷机的流程原理图。

图中,稀溶液由溶液泵输送,通过阀F1的调节,进入低温换热器和凝水回热器,然后分两路:一路通过调节阀F2经高温换热器后进入高压发生器,另一路从凝水回热器出口,通过调节阀F3进入低压发生器。

高压发生器中是溴化锂水溶液,该稀溶液被在管内流动的蒸汽加热,产生高压高温冷剂蒸汽,溶液被浓缩,而低压发生器中的稀溶液,则被来自高压发生器的冷剂蒸汽加热,产生二次冷剂蒸汽,溶液也被浓缩。

高压发生器的冷剂蒸汽加热低压发生器后,凝结成冷剂水,经节流后,压力降低,进入冷凝器,与低压发生器产生的冷剂蒸汽一起,被在冷凝器管内流动的冷却水所冷却。聚积在冷凝器中的冷剂水,经U型管节流后进入蒸发器。

由于蒸发器中的压力很低,便有部分冷剂水蒸发,而大部分的冷剂水则由冷剂泵输送,喷淋在蒸发器管簇上,吸取在管内流动的冷水的热量而蒸发,使冷水的温度降低,从而达到制冷目的。

在溴化锂吸收式制冷中,由于溴化锂水溶液本身沸点很高(1265℃),极难挥发,所以可认为溴化锂饱和溶液液面上的蒸汽为纯水蒸汽;在一定温度下,溴化锂水溶液液面上的水蒸气饱和分压力小于纯水的饱和分压力;而且浓度越高,液面上的水蒸气饱和分压力越小。所以在相同的温度条件下,溴化锂水溶液浓度越大,其吸收水分的能力就越强。这也就是通常用溴化锂作为吸收剂,水作为制冷剂的原因。

冷媒水:即上图的“冷水”,或称“冷冻水”。当冷凝器内的水通过节流阀进入蒸发器时,急速膨胀而汽化,并在汽化过程中大量吸收蒸发器内冷媒水的热量。冷媒水是把空调的制冷量通过管道和冷冻水泵送入空调房间,由室内的风机盘管(或组合式空调箱)把冷量交换给空间的水。简单讲,冷媒水就是把冷量从空调机房传送到使用房间进行冷热交换的媒质。

冷却水:从上图右边所指的“冷却水进”处进入。冷却水不断地带走吸收过程中放出的吸收热,因此中间溶液便具有不断地吸收来自蒸发器的水蒸气的能力。空调主机的热量通过冷却水输送到冷却塔,然后通过冷却塔散热到大气中。

热交换器:离开发生器的浓溶液的温度较高,而离开吸收器的稀溶液的温度却相当低。浓溶液在未被冷却到与吸收器压力相对应的温度前不可能吸收水蒸气,而稀溶液又必须加热到和发生器压力相对应的饱和温度才开始沸腾,因此通过一台溶液热交换器,使浓溶液和稀溶液在各自进入吸收器和发生器之前彼此进行热量交换,使稀溶液温度升高,浓溶液温度下降。

附:成套设备组成

机组使用范围

溴化锂吸收式制冷空调技术实用手册 您想读这本书吗?

作者: 戴永庆 出版社: 机械工业出版社

译者: 丛书名:

出版日期: 上架日期:2006-1-20 17:45:00

ISBN:7111072286 页数: 版次:1-3

开本:16 装帧:

目录 前言 物理量符号名称及单位 概论 第1篇基础知识 第1章基础理论 1.1理论知识 1.1.1工质的状态参数 1.1.2理想气体状态方程式 1.1.3热力学第一定律 1.1.4传热学基本公式 1.1.5流体力学基本公式 1.1.6直燃式溴化锂吸收式机组的燃料 1.2溴化锂溶液的性质 1.2.1溴化锂溶液的物理性质 1.2.2溴化锂溶液的腐蚀性和缓蚀剂 1.2.3溴化锂溶液的热力图表 1.3溴化锂吸收式制冷循环 1.3.1单效溴化锂吸收式制冷循环 1.3.2单效溴化锂吸收式制冷循环在h-ξ图上的表示 1.3.3双效溴化锂吸收式制冷循环 1.3.4溴化锂吸收式热泵原理 1.4溴化锂吸收式制冷循环的热平衡计算和性能指标 1.4.1溴化锂吸收式制冷循环的热平衡计算 1.4.2溴化锂吸收式制冷循环的性能指标 第2章溴化锂吸收式制冷机型式与结构 2.1溴化锂吸收式制冷机分类 2.1.1按用途分类 2.1.2按驱动热源分类 2.1.3按驱动热源的利用方式分类 2.2蒸汽型溴化锂吸收式冷水机组 2.2.1蒸汽型冷水机组主要部件和结构型式 2.2.2双效蒸汽型冷水机组的溶液循环流程 2.2.3蒸汽型冷水机组主要部件的结构 2.3直燃型溴化锂吸收式冷热水机组 2.3.1制冷暖专用机 2.3.2同时制冷和暖机 2.3.3组合型溴化锂吸收式冷热水机组 2.4热水型溴化锂吸收式冷水机组 2.4.1单效热水型溴化锂吸收式冷水机组 2.4.2二段热水型溴化锂吸收式冷水机组 2.4.3二级热水型溴化锂吸收式冷水机组 2.5热泵型溴化锂吸收式机组 2.5.1第一类溴化锂吸收式热泵机组 2.5.2第二类溴化锂吸收式热泵机组 2.6溴化锂吸收式机组的自动抽气装置 2.6.1自动抽气装置的作用与原理 2.6.2几种常用的自动抽气装置的型式 第3章溴化锂吸收式机组的配套设备 3.1屏蔽泵 3.1.1屏蔽泵的选用要求 3.1.2屏蔽泵的结构 3.1.3屏蔽泵的工作原理 3.1.4SS型屏蔽泵的主要技术参数 3.1.5PN2型屏蔽泵 3.1.6L型屏蔽泵的主要技术参数 3.2真空泵 3.2.1真空泵的选用要求 3.2.2真空泵的结构 3.2.3真空泵的工作原理 3.2.4真空泵的主要技术参数 3.3真空阀 3.3.1真空阀的选用要求 3.3.2真空隔膜阀 3.3.3真空管道阀 3.3.4真空球阀 3.3.5真空角阀 3.3.6真空电磁阀 3.4真空测量仪表 3.4.1U形管绝对压力计 3.4.2U形管水银差压计 3.4.3旋转式麦氏真空计 3.4.4薄膜式真空压力计 3.5燃烧器 3.5.1燃烧器的选用要求 3.5.2燃油燃烧器 3.5.3燃气燃烧器 第4章溴化锂吸收式机组的性能 4.1外界条件变化对机组性能的影响 4.1.1冷水出口温度的影响 4.1.2冷却水进口温度的影响 4.1.3冷却水量的影响 4.1.4冷水量的影响 4.1.5热源温度的影响 4.2其他影响性能的因素 4.2.1污垢系数的影响 4.2.2不凝性气体的影响 4.2.3溶液循环量的影响 4.2.4表面活性剂的影响 4.2.5冷剂水污染的影响 4.3部分负荷时的性能 4.3.1部分负荷时制冷量与燃料耗量的关系 4.3.2部分负荷时的性能系数 4.3.3部分负荷时供热量与燃料耗量的关系 4.4性能变化汇总 第5章溴化锂吸收式机组的自动控制 5.1安全保护系统 5.1.1安装位置及设定范围 5.1.2主要安全保护元件 5.2能量调节系统 5.2.1制冷(热)量调节 5.2.2溶液循环量调节 5.2.3能量调节的主要元件 5.3程序运行系统 5.3.1起动流程图 5.3.2停机流程图 5.4微机控制系统 5.4.1微机控制系统的功能 5.4.2可编程序控制器(PLC) 5.4.3触摸控制屏 第2篇运行维护 第6章溴化锂吸收式机组的安装、调试与运行管理 6.1溴化锂吸收式机组的安装 6.1.1机组整体就位与安装 6.1.2机组分体就位与安装 6.2溴化锂吸收式机组的调试与运行 6.2.1调试前的准备 6.2.2机组调试 6.2.3机组运行 6.3溴化锂吸收式机组的运行管理 6.3.1抽气系统管理 6.3.2气密性管理 6.3.3冷剂水管理 6.3.4溴化锂溶液管理 6.3.5冷/热水和冷却水管理 6.3.6冷却水低温时的运行管理 6.3.7部分负荷的运行管理 6.3.8冷热切换运转管理 6.3.9特殊情况下的运行管理 6.3.10燃烧管理 6.3.11自控元件与电气设备的管理 第7章溴化锂吸收式机组的维护保养故障排除与检修 7.1溴化锂吸收式机组的维护保养 7.1.1保养要求 7.1.2短期停机保养 7.1.3长期停机保养 7.1.4定期检查与更换 7.2溴化锂吸收式机组的常见故障及处理 7.2.1结晶 7.2.2结冰 7.2.3冷剂水污染 7.2.4抽气能力低下 7.2.5突然停机 7.2.6性能低下及对策 7.2.7安全装置动作时的处理 7.2.8燃烧器故障处理 7.2.9故障处理汇总表 7.3溴化锂吸收式机组的检修 7.3.1真空阀门的检修 7.3.2视镜的检修 7.3.3屏蔽泵的检修 7.3.4真空泵的检修 7.3.5燃烧器的检修 7.3.6自控元件与电气设备的检修 7.3.7抽气系统的检修 7.3.8传热管的检查、清洗与更换 7.3.9机组的清洗 7.4溴化锂吸收式制冷系统附属设备的管理及保养 7.4.1冷却塔 7.4.2水泵 7.4.3空调器 7.5事故分析示例 7.5.1机组安装不水平 7.5.2冷剂水污染 7.5.3熔晶管焊接泄漏 7.5.4传热管泄漏 7.5.5蒸汽盖隔板垫片损坏 7.5.6点火失败 7.5.7溴化锂吸收式机组检修 第3篇工程应用 第8章空调用溴化锂吸收式制冷系统的设计与应用 8.1溴化锂吸收式制冷机组的工程应用特点 8.2溴化锂吸收式制冷机组的配置 8.3空调用溴化锂吸收式制冷机组的系统 8.3.1热水型溴化锂吸收式冷水机组的热水系统 8.3.2蒸汽型溴化锂吸收式冷水机组的蒸汽系统 8.3.3直燃型机组的燃料贮存与供应系统 8.3.4直燃型机组的排烟系统 8.3.5空调用冷、热水系统 8.3.6空调用冷却水系统 8.4溴化锂吸收式制冷系统附属设备的选用 8.4.1冷却塔 8.4.2水泵 8.4.3换热器 8.4.4水处理设备 8.4.5贮液罐 8.4.6贮油罐 8.4.7油泵 第9章溴化锂吸收式制冷系统的机房设计 9.1机房位置及技术要求 9.1.1机房的位置选择与组成 9.1.2机房设计的技术要求 9.1.3直燃型机组机房的防火、防爆、防静电要求 9.2溴化锂吸收式制冷系统的机房设备布置 9.2.1设备布置原则 9.2.2溴化锂吸收式制冷机组布置要求 9.2.3冷却水系统的设备布置 9.2.4冷、热水系统的设备布置 9.2.5燃油系统的设备布置 9.2.6燃气系统燃气报警器的布置 9.2.7其他附属设备布置 9.3机房职业安全卫生设计 9.3.1机房的防火、防爆、防静电设计 9.3.2职业卫生和安全防护 9.3.3消声、隔振和隔声 第10章溴化锂吸收式机组的系统管道设计 10.1管道设计基础知识 10.1.1管道分类 10.1.2管道压力等级及管径系列 10.1.3管道设计的任务和条件 10.2管径和管道压力降计算 10.2.1管径和管道压力降计算的一般要求 10.2.2管径选择 10.2.3管道压力降计算 10.3溴化锂吸收式制冷系统输送介质及材料选用 10.3.1输送介质种类、性质及压力、温度范围 10.3.2管道选用 10.4机房内管路安装设计 10.4.1安装方式和要求 10.4.2机房主要设备的配管 10.4.3过热蒸汽的减温减压设施 10.4.4蒸汽调节阀组 10.4.5蒸汽和凝水管的布置 10.4.6疏水器 10.4.7安全阀 10.4.8除污及排气设施 10.4.9燃油、燃气管路安装 10.4.10管道系统阀门选用与安装 第11章溴化锂吸收式制冷技术在空调工程中的应用实例 11.1图例 11.2热水型溴化锂吸收式制冷空调工程应用实例 11.2.1青岛黄金广场 11.3蒸汽型溴化锂吸收式制冷空调工程应用实例 11.3.1铁路上海站主站屋 11.3.2宾馆 11.3.3银桥大厦 11.3.4中北大酒店 11.4燃油型溴化锂吸收式制冷空调工程应用实例 11.4.1证券大厦 11.4.2中国新纪元物质流通中心 11.4.3北京民航京瑞大厦 11.5燃气型溴化锂吸收式制冷空调工程应用实例 11.5.1上海煤气公司美华大楼 11.5.2南新雅饮食城 11.5.3上海图书馆新馆 11.5.4上海市闸北区综合信息中心 11.5.5上海通用汽车公司 11.5.6上海复兴文娱中心 第4篇产品特性 第12章国内外澳化锂吸收式制冷机主要生产厂商产品介绍 12.1上海一冷开利空调设备有限公司 12.2江苏双良特灵溴化锂制冷机有限公司 12.3大连三洋制冷有限公司 12.4远大空调有限公司 12.5约克国际(北亚)有限公司 12.6上海田熊冷热设备有限公司 12.7上海浦东溴化锂制冷机厂 12.8上海申马集团空调机有限公司 12.9开封通用机械厂 12.10烟台荏原空调设备有限公司 12.11青岛LG-同和制冷设备有限公司 12.12浙江联丰集团公司 12.13杭州溴化锂制冷机厂 12.14广东莱孚重工机械有限公司 12.15上海华源前进制冷空调公司 12.16常州溴化锂制冷机厂 12.17山东水龙王集团空调设备有限公司 12.18永升集团泰兴溴化锂制冷机厂 12.19湖南宏大空调设备有限公司 12.20山东早春集团股份有限公司 第5篇参考资料 第13章溴化锂吸收式机组标准 13.1概述 13.2型号编制方法规定 13.2.1JB/T7247《溴化锂吸收式冷水机组》规定 13.2.2JB/T8055《直燃型溴化锂吸收式冷、热水机组》规定 13.3加热源规定 13.4性能指标和工况规定 13.4.1性能指标和名义工况规定 13.4.2机组工作范围 13.4.3部分负荷性能规定 13.4.4污垢系数对性能的影响 13.4.5机组的噪声 13.5机组的强度和气密性 13.6燃烧设备的性能 13.7机组的安全保护规定 13.8质量和安全检验 13.9强度和气密性试验 13.10控制调节和安全保护元件试验 13.10.1元件动作试验 13.10.2绝缘电阻和耐电压试验 13.11噪声测定 13.12阻力测定 13.13燃烧设备试验 13.13.1额定燃烧量试验 13.13.2点火试验 13.13.3燃烧设备安全装置动作试验 13.14烟气黑度测定 13.15制冷量和供热量测量 13.15.1制冷量和供热量的测量方法 13.15.2蒸汽流量的测量 13.15.3本体散热损失系数的计算方法 13.15.4测量仪表 13.15.5试验报告 第14章相关法规、规范、标准 14.1溴化锂吸收式机组设计、安装、施工及验收规范 14.1.1设计规定 14.1.2安装、施工和验收规定 14.2燃料 14.2.1城市燃气安全管理规定 14.2.2上海市燃气管理条例 14.2.3GB50028—1993《城镇燃气设计规范》 14.2.4GBJ74—《石油库设计规范》 14.2.5GB50156—1992《小型石油库及汽车加油站设计规范》 14.2.6GB50041—1992《锅炉房设计规范》 14.2.7DBJ08—73—1998《民用建筑锅炉房设置规定》 14.2.8燃油标准 14.2.9燃气标准 14.3冷却水、水质、冷却塔 14.3.1GB50050—1995《工业循环冷却水处理设计规范》 14.3.2DB31/T143—1994《宾馆、饭店空调用水及冷却水水质标准》 14.3.3JB/T7247、JB/T8055、JBJ10规定的水质标准 14.3.4日本的水质标准 14.3.5冷却塔标准 14.3.6冷却塔安装规定 14.4环境保护和大气污染防治 14.4.1GB3095—1996《中华人民共和国环境空气质量标准》 14.4.2GB162—1996《中华人民共和国大气污染物综合排放标准》 14.4.3GB13271—1991《锅炉大气污染物排放标准》 14.5噪声防治 14.5.1GB3096—1993《城市区域环境噪声标准》 14.5.2GBJ87—1985《工业企业噪声控制设计规范》 14.5.3GB12348—1990《工业企业厂界噪声标准》 14.6消防 14.6.1《中华人民共和国消防法》 14.6.2GBJ16—1987《建筑设计防火规范(19年版)》 14.6.3GB50045—1995《高层民用建筑设计防火规范(19年版)》 14.7节约能源 14.7.1《中华人民共和国节约能源法》 14.7.2《上海市节约能源条例》 14.7.3《山东省节约能源条例》 附录 附录A国内外有关生产溴化锂吸收式制冷机厂商简介 附录B国内外溴化锂吸收式制冷机相关配套设备厂商简介 附录C常用气体、液体物性图表和单位换算表 附表C-1饱和水与饱和水蒸气表(按温度排列) 附表C-2饱和水与饱和水蒸汽表(按压力排列) 附表C-3干空气的物理性质 附表C-4水的物理性质 附表C-5过热水蒸气的热物理性质 附表C-6烟气的热物理性质 附表C-7制冷常用单位换算 附图溴化锂溶液h-ξ图 参考文献