1.太阳能热水系统的结构特点

2.什么是太阳能热水系统?

3.太阳能热水器的应用方案

4.太阳能热水器原理大全 太阳能热水器原理图

5.太阳能热水器与高层住宅一体化结合的建筑策略?

6.阳台壁挂太阳能热水器工作原理与构造?

7.跪求...基于51单片机自动跟踪阳光太阳能热水器控制系统的设计

太阳能热水系统设计流程图_太阳能热水系统设计

1、太阳能供暖系的设计

太阳能供暖系统在供暖季提供部分供暖热量,非供暖季提供足量生活热水,全年充分利用太阳能。因此,太阳能供暖系统也常称为太阳能联合系统(solarcombisystem)。系统运行原理如图1所示。

1)系统运行原理

太阳能集热循环:太阳能集热循环为温差控制、强制循环的落空系统。系统通过比较太阳能集热器和水箱的温度控制集热器循环泵启停,当集热器温度高于水箱温度设定值时,循环泵启动,太阳能集热器不断将水箱中的热水加热;当温差低于设定值时.循环泵停止,室外太阳能集热器和管路中的水受重力作用落回水箱(要求集热器比水箱位置高),防止反向散热,并达到冬季防冻的目的。

加热循环:加热为温度控制。系统通过检测水箱中的温度是否达到设定温度,确定热源是否开启。

2)系统特点

①用套筒式水箱,满足供暖和生活热水的不同要求。储热水箱由外层供暖水箱和内部热水箱组成,供暖水箱为开式非承压水箱,内部热水箱为承压水箱。热水箱为承压顶水使用,提高了热水使用的舒适性,同时,春夏秋可利用供暖水箱中的热量,增加了热水量。

②太阳能循环用一次循环、排空系统,在提高系统效率、减少系统投资的同时满足了冬季防冻要求。系统不同于国外的二次循环系统,供暖水箱中的热水通过循环管路直接和太阳能集热器进行循环,取消了中间换热过程,提高了系统效率;用系统落空技术替代国外用防冻液防冻的方式,减少了系统投资,防冻简单、可靠。

③太阳能循环系统用非承压系统,解决了夏季闭式二次循环系统高温、高压容易给系统管路和设备造成损坏的问题,提高了系统供暖的可维护性和使用寿命。国外闭式二次循环太阳能供暖系统形式如图2所示。

2、太阳能供暖系统安装方式

在实际的太阳能供暖项目中,太阳能集热器可用嵌入屋面瓦中、安装在屋面瓦上、安装在南立面上、安装在大倾角坡屋面上(更利于冬季吸收太阳能)等多种方式。

注重和建筑同步设计,在实际工程项目中,如果在建筑设计时没有考虑太阳能系统的安装,在施工中会遇到诸如屋顶集热器安装预埋、管道布置、设备间选取、供水供电等各种问题。因此,在建筑设计时必须同步考虑太阳能系统的设计、安装,才能保证施工的顺利进行及系统的质量。

太阳能热水系统的结构特点

四季沐歌在太阳能热水系统设计时,针对一些项目会做成双水箱系统,这样做的主要优点有以下几条,1是可以增加太阳能集热器的集热效率;2是分散屋面水箱荷载;3是可以节约能源的使用;4是恒温水箱可以保证用水温度的恒温。

什么是太阳能热水系统?

系统组成:真空管集热器、可连接水箱、可调整支架、换热器。

无动力循环即热式太阳能热水系统运行原理:真空管内的水遇到阳光辐射后,开始升温,管内的水升温后密度变小,自然循环到水箱内,逐步把水箱内的水加热,升温后的水储存在具有聚氨酯发泡保温的的水箱内。室内冷水经过水箱内固定好的波纹管流道流过,把带有压力的自来水温升到几乎与水箱内水温相同的温度(温差小于2度)流出。从而获得稳定、有压力的、洁净的热水。 自然循环太阳能热水系统是依靠集热器和储水箱中的温差,形成系统的热虹吸压头,使水在系统中循环;与此同时,将集热器的有用能量收益通过加热水,不断储存在储水箱内。

系统运行过程中,集热器内的水受太阳能辐射能加热,温度升高,密度降低,加热后的水在集热器内逐步上升,从集热器的上循环管进入储水箱的上部;与此同时,储水箱底部的冷水由下循环管流入集热器的底部;这样经过一段时间后,储水箱中的水形成明显的温度分层,上层水首先达到可使用的温度,直至整个储水箱的水都可以使用。

用热水时,有两种取热水的方法。一种是有补水箱,由补水箱向储水箱底部补充冷水,将储水箱上层热水顶出使用,其水位由补水箱内的浮球阀控制,有时称这种方法为顶水法;另一种是无补水箱,热水依靠本身重力从储水箱底部落下使用,有时称这种方法为落水法。 强制循环太阳能热水系统是在集热器和储水箱之间管路上设置水泵,作为系统中水的循环动力;与此同时,集热器的有用能量收益通过加热水,不断储存在储水箱内。

系统运行过程中,循环泵的启动和关闭必须要有控制,否则既浪费电能又损失热能。通常温差控制较为普及,有时还同时应用温差控制和光电控制两种。

温差控制是利用集热器出口处水温和贮水箱底部水温之间的温差来控制循环泵的运行。

早晨日出后,集热器内的水受太阳辐射能加热,温度逐步升高,一旦集热器出口处温和贮水箱底部水温之间的温差达到设定值(一般8~10℃)时,温差控制器给出信号,启动循环泵,系统开始运行;遇到云遮日或下午日落前,太阳辐照度降低,集热器温度逐步下降,一旦集热器出口处水温和贮水箱底部水温之间的温差达到另一设定值(一般3~4℃)时,温差控制器给出信号,关闭循环泵,系统停止运行。

用热水时,同样有两种取热水的方法:顶水法和落水法。

顶水法是向贮水箱底部补充冷水(自来水),将贮水箱上层热水顶出使用;落水法是依靠热水本身重力从贮水箱底部落下使用。在强制循环条件下,由于贮水箱内的水得到充分的混合,不出现明显的温度分层,所以顶水法和落水法都一开始就可以取到热水。顶水法与落水法相比,其优点是热水在压力下的喷淋可提高使用者的舒适度,而且不必考虑向贮水箱补水的问题;缺点也是从贮水箱底部进入的冷水会与贮水箱内的热水掺混。落水法的优点是没有冷热水的掺混,但缺点是热水靠重力落下而影响使用者的舒适度,而且必须每天考虑向贮水箱补水的问题。

在双回路的强制循环系统中,换热器既可以是置于贮水箱内的浸没式换热器,也可以是置于贮水箱外的板式换热器。板式换热器与浸没式换热器相比,有许多优点:其一,板式换热器的换热面积大,传热温差小,对系统效率影响少;其二,板式换热器设置在系统管路之中,灵活性较大,便于系统设计布置;其三,板式换热器已商品化、标准化,质量容易保证,可靠性好。

强制循环系统可适用于大、中、小型各种规模的太阳能热水系统。 直流式太阳能热水系统是使水一次通过集热器就被加热到所需的温度,被加热的热水陆续进入贮水箱中。

系统运行过程中,为了得到温度符合用户要求的热水,通常用定温放水的方法。集热器进口管与自来水管连接。集热器内的水受太阳辐射能加热后,温度逐步升高。在集热器出口处安装测温元件,通过温度控制器,控制安装在集热器进口管理上电动阀的开度,根据集热器出口温度来调节集热器进口水流量,使出口水温始终保持恒定。这种系统运行的可靠性取决于变流量电动阀和控制器的工作质量。

有些系统为了避免对电动阀和控制器提出苛刻的要求,将电动阀安装在集热器出口处,而且电动阀只有开启和关闭两种状态。当集热器出口温度达到某一设定值时,通过温度控制器,开启电动阀,热水从集热器出口注入贮水箱,与此同时冷水(自来水)补充进入集热器,直至集热器出口温度低于设定值时,关闭电动阀,然后重复上述过程。这种定温放水的方法虽然比较简单,但由于电动阀关闭有滞后现象,所以得到的热水温度会比设定值低一些。

直流式系统有许多优点:其一,与强制循环系统相比,不需要设置水泵;其二,与自然循环系统相比,贮水箱可以放在室内;其三,与循环系统相比,每天较早地得到可用热水,而且只要有一段见晴时刻,就可以得到一定量的可用热水;其四,容易实现冬季夜间系统排空防冻的设计。直流式系统的缺点是要求性能可靠的变流量电动阀和控制器,使系统复杂,投资增大。

直流式系统主要适用于大型太阳能热水系统。 在太阳能热水系统中,贮水箱是用于储存由太阳能集热器产生的热量,有时也称为“储热水箱”。利用液体(特别是水)进行储热,是各种热储存方式中理论和技术都最成熟、推广和应用最普遍的一种。通常希望所用液体除具有较大的比热容之外,还具有较高的沸点和较低的蒸气压,前者是避免发生相变(变为气态),后者则是为减小对储热容器产生的压力。在低温液态蓄热介质中,水是性能最好,因而也是最常使用的一种。

优点

①物理、化学和热水学性质很稳定,人们对它了解得十分清楚,使用技术最成熟;

②可以兼作蓄热介质和传热介质,在储热系统内可以免除热交换器;

③传热及液体特性相当好,在常用液体中,其比热容最大,热膨胀系数较小,黏滞性小,很适合于自然循环和强制循环;

④液态-气态平衡时的温度-压力关系十分关系十分适用于平板太阳能集热器;

⑤来源丰富,价格低廉。

缺点

①作为一种电解腐蚀性物质,所产生的氧气易于锈蚀金属,且对于大部分气体(特别是氧气)来说都是溶剂,因而对容器和管道容易产生腐蚀;

②凝固(结冰)时体积膨胀较大(达10%左右),易对容器和管道造成破坏;

③在中温以上(超过100℃),它的蒸气压随其热水温度的升高而指数增大,帮用水来储热,温度和压力都不能超过其临界点(373.0℃,2.2×10Pa),如就成本而言,储热温度为300℃时的成本比储热温度为200℃时的成本要高出2.75倍。

利用水作为蓄热介质时,可以选用不锈钢、搪瓷、塑料、铝合金、铜、铁、钢筋水泥、木材等各种材料制作储热容器,其形状可以是圆柱形、箱形和球形等,但应注意所用材料的防腐蚀性和耐久性。例如选用水泥和木材作为储热容器材料时,就必须考虑其热膨胀性,便防止因长久使用产生裂缝而漏水。

储热水箱储热水箱是一种既可以储热又可以蓄冷的装置。它是在给建筑物供应热水、供暖以及空调的系统中作为一个组成部件而发展起来的,主要用于调节能源与能耗之间的不平衡,以便提高系统的热利用效率及满足热负荷的需要。

储热水箱由于放热特性(完全压出流、完全混合流和部分混合流)、压力状态(敞开式和封闭式)、水箱数多少(单箱和多箱)、水箱的安装方式(立式或纵式和卧式或横式)、结构材料以及用途等的不同,可以分为各种不同的类型。下面仅就前两者进行重点介绍。 按照储热水箱的放热特性(或储热水箱内的混合特性),可以分为完全压出流、完全混合流和部分混合流三类。如以υ表示水流速度,L表示水箱长度,E表示混合扩散系数,则上述三类可以根据箱内水温的混合程度或混合特性M=υL/(2E)值的大小进行分类。

⑴完全压出流

或称活塞流,即水箱内的完全是活塞式流动,箱内存在冷热两个水域,二者的分界面十分清晰,表明几乎没有混合,这时可以认为E→0或M→∞。当储热水箱放热(冷)时,水流从底(顶)部进入,热量可以全部加以利用,这是一种理想状态,如图2-11所示。定在储热水箱内盛有100L温度为80℃的热水,然后从底部进口A处缓慢地注入20℃的冷水,而在出口B处流出的则全部是80℃的热水。但当流出的水量风一超过100L,则水温立即降为20℃。

⑵完全混合流

水箱内的温度完全均匀一致,表明混合得非常充分,这时可以认为E→∞或M→0。通常情况下,这只有在储热水箱内安装强力搅拌机,当它一边搅拌一边缓慢地注入冷水时才有可能实现。开始时从出口B处流出的水温是80℃,然后随着时间的推移,水温按指数函数的形式降低,当流出水量刚好达到100L时,水温已降为80×e≈29.3℃左右。

⑶部分混合流

或称为温度分层流,表明水箱内的温度分布不均匀,出现分层情况,这是可以认为E值有限,即0<E<∞,因此M值也有限,0<M<;∞。在通常情况下,一般储热水箱内的情况大都如此。 按照储热水箱的压力状态,可以分为敞开式和封闭式两类。在通常的大气压力下,空间取何种形式为宜,需视实际情况而定。

⑴敞开式

因水箱与大气相通,承受压力较小,但容易受酸性腐蚀,且由于氧气易溶于水,故对容器的耐腐蚀性要求较高;另外,系统所用消耗伯扬程也要求较高。一般多用于大型太阳能系统。

⑵封闭式

因水箱内充满水,故上方应设置膨胀箱,以避免将储热水箱破坏。其优点是配管系统简单,所需水泵的扬程较小,因而循环泵消耗的动力较少;其缺点是所承受的静压力比较大,对储热水箱的耐压要求也比较高,因而耐压容器的设备费用较高。一般多用于小型太阳能系统。

实际应用中,建筑物的供热水系统和屋顶的储热水箱(与自然循环热水系统配套使用)大都是敞开式的;此外,利用基础梁的空间作为储热水箱以及使用混凝土制的单独储热水箱也都是敞开式的。相反,当系统运行温度在100℃以上时,除非用特殊的传热介质,否则所用储热水箱必须是封闭的;此外,放置在地面上的强制循环热水系统的储热水箱也大都是封闭式的。

储热水箱的结构材料,敞开式的多用镀锌钢板、不锈钢和玻璃钢等,而封闭式的则多用搪瓷、不锈钢和玻璃钢等。

储热水箱的结构形式,多半用圆筒形,一则易于加工,易于封闭,比较经济;二则放热性能较好,所形成的死水区域较小;三则具有较好的耐压性(在内压相同的情况下,作用在圆筒壁上的张力与半径成正比)。 ⑴热动态特性的主要参数

①储热水箱内死水区域的大小;

②由储热水箱内不同温度的水的混合程度所确定的混合特性M值的大小;

③储热材料内部所存在的温度梯度;

④热交换器的热容量;

⑤与储热水箱连接的管道系统的热容量;

⑥储热水箱本身以及与其相接触的周围环境的热容量(适用于埋在地下的储热水箱)。

对于利用水作为蓄热介质的储热水箱来说,因为不必使用热交换器,故可不考虑上列③④两项。

⑵影响热动态特性的因素

①水箱内流体的混合状况—在实际使用的储热水箱中,水流线有可能形成非完全活塞流的形式,这样不仅不能充分地储热,也会使所储存的热量不能得到完全的利用。

②水箱的结构和循环水量—主要是指水箱内隔板的数量和配置方式,连通管的数量、管径和设置位置,还有箱的形状和循环水量等。

③失热和得热—由于水箱本身具有围护结构表面,故不可避免地会有失热和得热。对于为削平瞬时用热高峰而设置的短期储热水箱来说,如果埋于地下又取隔热措施,则对其热动态特性反而不利,因为土壤具有热容量,也能起到一定的储热作用。

④储热温度和取热温度—所谓储热温度,是指储热终了时水箱内的平均水温;所谓取热温度,则是指从水箱内取热时的出口水温。热量能否充分地加以利用以及整个储热水箱运行时间的长短,都与这两个温度的取法密切相关。 在使用储热水箱时,出口水温的变化状况对于热负荷来说是重要的。从理论上讲,可以通过求得箱内的水温分布情况来获得输入温度和输出温度(即通常所谓的进、出口温度)之间的函数关系。但这样做就必须应用三维的连续性方程、动量守恒方程和能量守恒方程来求解,步骤十分复杂,所需计算程序也很长。

在实际设计中,并不需要直接了解箱内的水温分布温度,而只需知道输入温度和输入热量随时间的变化情况,并能求得输出温度随时间变化的结果即可。主要使用的是“瞬态响应法”,即把整个水箱视作一个系统。如果定输入和输出之间存在着线性关系(当进、出口水温相差不大时,即可近似地认为如此),则对于任何输入温度的变化,都可通过卷积积分求得其输出温度的变化。

总之,利用储热水箱作为热水、暖及空调系统的小规模和短期储热装置,在太阳能热利用中起着重要的作用,并已取得了一系列的实际应用。如果需要进行大规模和跨季度长期储热,近二三十年来已有一些国家开始研究地下含水层作为有效的储热和节能措施。

太阳能热水器的应用方案

太阳能热水系统是利用太阳能集热器集太阳热量,在阳光的照射下使太阳的光能充分转化为热能,通过控制系统自动控制循环泵或电磁阀等功能部件将系统集到的热量传输到大型储水保温水箱中,在匹配当量的电力、燃气、燃油等能源,把储水保温水箱中的水加热并成为比较稳定的定量能源设备。该系统既可提供生产和生活用热水,又可作为其他太阳能利用形式的冷热源,是目前太阳热能应用发展中最具经济价值、技术最成熟且已商业化的一项应用产品。

系统原理:无动力型:真空管集热器、可连接水箱、可调整支架、换热器。

无动力循环即热式太阳能热水系统运行原理:真空管内的水遇到阳光辐射后,开始升温,管内的水升温后密度变小,自然循环到水箱内,逐步把水箱内的水加热,升温后的水储存在具有聚氨酯发泡保温的的水箱内。室内冷水经过水箱内固定好的波纹管流道流过,把带有压力的自来水温升到几乎与水箱内水温相同的温度(温差小于2度)流出。从而获得稳定、有压力的、洁净的热水。

自然循环:自然循环太阳能热水系统是依靠集热器和储水箱中的温差,形成系统的热虹吸压头,使水在系统中循环;与此同时,将集热器的有用能量收益通过加热水,不断储存在储水箱内。

系统运行过程中,集热器内的水受太阳能辐射能加热,温度升高,密度降低,加热后的水在集热器内逐步上升,从集热器的上循环管进入储水箱的上部;与此同时,储水箱底部的冷水由下循环管流入集热器的底部;这样经过一段时间后,储水箱中的水形成明显的温度分层,上层水首先达到可使用的温度,直至整个储水箱的水都可以使用。

用热水时,有两种取热水的方法。一种是有补水箱,由补水箱向储水箱底部补充冷水,将储水箱上层热水顶出使用,其水位由补水箱内的浮球阀控制,有时称这种方法为顶水法;另一种是无补水箱,热水依靠本身重力从储水箱底部落下使用,有时称这种方法为落水法。

太阳能热水器原理大全 太阳能热水器原理图

太阳能热水工程主要由太阳能集热器、储热系统、控制系统、换热系统、能源系统、保温材料、管路系统及配件等部分组成。太阳能集热器吸取太阳的热量,加热管道中的水,加热后的水靠循环泵通过管路输送至储热装置,通过整体能源系统的设计可为锅炉、热泵等提供基础热水,通过管路输送至各热点使用。

系统组成:

太阳能集热器:

1.适合安装在屋顶及其他可固定安装位置(钢结构支架上等)安装;

2.集热器美观大气,可任意角度安装,维护方便;

3.集热器型号多样,可满足任何空间安装,客户选择多样化。

储热系统:

1.专利工程水箱,防腐性能强,水嘴设计规范合理,连接管路方便;

2.保温层为聚氨酯发泡一次成型,发泡均匀,保温效果好;

3.型号齐全,可满足用户80吨以下热水需求;

4.可满足400平米以下建筑单户暖需求。

换热系统:

1.选用高效高质量换热器,换热效果好;

2.用换热系统,系统水质好;

3.设计独立换热系统可满足用户多种多样用热点水质、水压和水量的需求。

控制系统:

1.用PLC程序模块控制,多点控制,精度高,性能稳定;

2.控制界面人性化,模块清晰,操作方便。

能源系统:

1.多种热源可供选择,电、燃气、燃煤锅炉、燃油锅炉、热泵都可以根据用户特点选择;

2.系统得热量多,热损失小。

保温材料:

1.用聚苯乙烯泡沫材料,保温好,散热小;

2.保温外敷铝箔,美观,防辐射散热。

管路系统及配件:

1.管路选用标准PVC管材,经济合理;

2.配件标准设计,防锈防腐蚀。 热水效果保证:全年全天24小时充足水量供应,即开即热;

热水品质保证:压力恒定,水温稳定,水质干净;

系统集成设计:系统整体考虑,搭配热源,专业软件分析,系统高效可靠,人性化设计;

系统质量保证:对集热器、水箱、循环泵、管路等各个环节给予全面保障,确保系统安全稳定运行20年以上;

系统智能控制:全数据显示、智能化控制、分户计量、信息准确。 1.安装太阳能热水器时,输水管内可能沾有尘埃或油味,首次使用时可打开水龙头先排除杂物。

2.太阳能热水器内的存水,应根据当地的水质状况作定期的排放,排水时间可选于早上集热器较低温时。

3.太阳能热水器表面,依地区落尘量而作定期的擦试,下雨时能起到自行清洗,保持热水器的表面清洁可得到较高的集热效率。

4.连续晴天多日不使用热水时,其热水温度很高,在使用太阳能热水器时请先开冷水,后开热水,以免烫伤。

5.水龙头出口端一般都有滤网装置,水管内的水垢杂物会聚集于此网,应定期自行拆下清洗,可加大水量流出顺畅。

6.冬季,管道被冻住是很常见的事,如发现管道内已结冰但管道尚未开裂,气温回升后一般即可自动疏通。也可用电吹风烘吹,或拿毛巾裹住水管,然后用温水慢慢浇淋,切不可用火烘烤、敲击管道或用开水急烫,那样会使管道爆裂。多次冻堵容易使管道冻裂,因此需要因此加强管道保温措施。

7.太阳能热水器平均每二年到三年就需要进行清洗、检查、消毒,用户平时也可以自己动手做一些消毒工作,如可买些含氯的消毒药剂往进水口中倒进去,让其浸泡一段时间,再放出,能起到一定的消毒杀菌效果。

8.太阳能热水器平均二年到三年需对真空管内部进行清理,防止真空管内部结水垢影响吸热效果。

9.如太阳能热水器配置专用仪表需注意防雷防电,打雷时切勿洗澡并拔掉电加热插头。 市场上绝大部分电热管只配备有简单的温控器,不具备真正系统防干烧的功能。同时,太阳能热水器大部分安装在室外房顶上,这种管理上的粗放和管理人员技术的差异,再加上某些电热管生产厂家对其产品“能防干烧”的误导,造成了太阳能热水器从安装上电热管开始,就存在了严重的事故隐患。 如何解决电热管“干烧”这个问题呢?除了选择可靠的供应商之外还应该在冬季对太阳能用的不多的情况下,也应该往太阳能热水器水箱上上水,据数据显示,水箱没有水,太阳能真空管处于空晒的情况下,管内温度能达到2500C左右,很容易炸管。冬季管子都裸露在外面,天气很冷的情况下,管子里面结冰上不了水,这样问题的解决只需要在水箱管或太阳能管包裹一层厚海绵,能有效的防止水上不上去导致空管而炸管。

其次,要查看漏电保护装置工作是否完好,这个也很重要。另外在有条件的情况下要隔一段时间清洗水箱。总而言之,不管是太阳能热水器用电热管还是其它液体用电热管均不可脱离液体干烧,否者必将使得电热管内部温度过高而使得电热管烧坏,导致安全隐患。

太阳能热水器与高层住宅一体化结合的建筑策略?

现在家居中多少都会使用热水器,热水器的种类很多,其中太阳能热水器是比较环保的,但也有很多人不明白太阳能热水器到底是怎样工作运转的,下面我们去看看:

  太阳能热水器原理:

  太阳能热水器原理图:

太阳能热水器工作原理说复杂也不复杂其主要包括:吸热、循环、保温三大结构原理,如果弄成相信大家更容易理解。

  太阳能热水器集热器吸热原理:

太阳能热水器的集热器表面有一特殊的涂层,此涂层对太阳能可见光范围具有很大的吸收率,吸收为热以后,集热器的散热热辐射波长在长波范围,该涂层对长波的发射率很低,这样就有效的“滞留”了太阳能的热量。

  太阳能热水器循环原理:

利用冷水比热水密度大,冷水下沉,热水上升,形成自然对流循环、使水箱中的水逐渐变热,达到顾客满意的水温为止。当太阳强度不足以满足循环需要的时候,可以在水循环闭路加一水泵,实现强制循环。

  太阳能热水器保温原理:

太阳能保温水箱和其它保温水箱一样,是储存热水的容器。因为太阳能热水器只能白天工作,而人们一般在晚上才使用热水,为了使白天生产的热水在到晚上或隔天使用时保持一定的温度,所以必须通过保温水箱把热水储存起来。保温水箱有三部分组成:外胆、聚氨酯发泡层和不锈钢内胆,其中,聚氨酯发泡层负责太阳能热水器的保温,聚氨酯的保温性能卓越,是目前国内所有建材中导热系数最低(≤0.024),热阻值最高的保温材料。太阳能热水器的发泡层厚度一般在50mm-70mm之间,实际保温性能则取决于生产厂家的发泡机械、标准化模具和工艺技术水平。

  壁挂式太阳能热水器原理:

壁挂式太阳能热水器属于分离式太阳能热水系统,水箱放置在阳台内,集热器放置在建筑南立面阳台上。其工作原理为:利用平板集热管将吸收的太阳辐射转换成热能。利用虹吸原理,热能到达水箱与水换热,从而使整个水箱内的水温逐渐升高。

热水系统是平板集热器里面的翅片将吸收的太阳辐射转换成热能,使得集热器换热管内中的工质的温度不断升高,利用热液密度小,冷液密度大的特点,通过循环管路,在集热器与水箱之间形成冷水自上而下,热水自下而上的自然循环。通过这种循环,使水箱内的水逐渐升温。由于平板集热器内的工质为抗低温液体,能保持在零下40度不冻。所以即使高寒地区,一年四季也可正常运行。

太阳能热水器原理就给大家介绍到这里了,希望对大家有帮助,更多热水器知识请继续关注土巴兔学装修。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:s://.to8to/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~

阳台壁挂太阳能热水器工作原理与构造?

太阳能热水器与高层住宅一体化结合的建筑策略具体内容是什么,下面中达咨询为大家解答。

太阳能热水器在住宅建筑中已经有大量应用,但由于热水器本身的问题及高层住宅的特殊性,其在高层住宅上的应用及与建筑的结合一直没有得到较好的解决。随着城市用地的日益紧缺,高层住宅会逐渐成为城市建设的主流,同时常规能源的日趋紧张也会使太阳能利用越来越受到重视。因此,在目前没有适合产品的情况下,从建筑角度解决太阳能热水器与高层住宅的一体化结合就成为较好的选择。在高层住宅中一体化应用太阳能热水系统,首先要解决两大问题:一是选择合适的系统;二是选择适宜的安装位置。太阳能热水系统按供热水范围主要分为集中供热水系统、集中 - 分散供热水系统和分散供热水系统等三大类。现在部分高层住宅上应用的分体式热水器就是用分散供热水系统。但这种由用户自己选择、安装的做法易造成立面零乱、破坏建筑结构、安全性差、造价高等问题,同时低层用户难以使用;集中 - 分散供热水系统也是由住户自己管理、使用,但高层住宅中应用就存在管路距离远、热损失大,水箱占用室内使用面积的缺点;集中供热水系统相对于其他两种供热水系统,有节约投资,用户间用水量可以平衡,集热器较易有序列布置等优点,但也存在管线长、热损失大,需要集中管理维护和分户计量设施等问题。从适合集热器安装的部位分析,高层住宅的屋顶由于其位置高、遮挡少、安装维修方便、易于和热水器结合成为太阳能利用的首选位置。仅次于屋顶的部位为南向高处的墙面和阳台,充分利用这几个部位是与建筑结合及保证集热效率的前提。主要从系统和安装部位考虑热水器和建筑一体化结合。1 屋顶架空集中式这种做法适用于各种类型的高层住宅。主要利用屋顶构架架空设置集热器。用的集中供热水系统,能平衡用户间用水量,相应减少一定的集热器面积,解决高层住宅应用太阳热水器存在的主要问题。1. 1 系 统用以单元或一栋楼为单位的集中供热水系统。针对冬季使用太阳能不足的问题,用天然气热水炉加热。这种系统为间接式热交换、强迫式双循环的分离式承压系统,不怕冻,不会造成集热器结垢,即使有集热器损坏,系统仍能正常运行。同时集中式系统可以平衡用户之间的用水量,非常适合集合住宅的形式,能有效和高效的利用太阳能,管理和维修都比较方便。1. 2 集热器形式和位置用平板式集热器或 U 形管真空管太阳能集热器单元阵列。单元可以集成管线、集热管等组成集热器模块,在工厂内预制好现场安装即可。集热器不是直接安装在屋面上,而是安装在利用下部的原有结构升出屋面形成的构架上。构架可以用钢筋混凝土结构或者钢结构做成倾斜式或水平形式,其间铺设细长密集的集热管,与外部框架形成整体,成为建筑的特色。同时集热管还能作为屋顶的遮阳,改善屋顶夏季的热工性能,使原本纯装饰的构件多功能化(图 1)。1. 3 水 箱集中供热水系统的水箱间可设在楼、电梯间的上面,根据负荷大小可以每单元或每栋楼设一个水箱。这样水箱的容积适宜,对结构影响小;集热器和水箱之间的管线较短,热损失少。同时增设干管循环解决低层用户管道冷水过多问题。1. 4 管道井的设置通过适当加大建筑已有的设备管道井解决水箱和用水点的连接管道安装。这样就不用在各户内另设,减少对住户干扰,增加了户内使用面积。1. 5 经济性分析以 18 层单元式高层住宅为例,计算参数按每单元共36 户,每户3 人,每人每天用水量50 L,集热器面积按每 100 L 水需 1. 2 m2 选取。这样集热器面积约需65 m2,水箱容积约5. 4 t。根据力诺-瑞特的 U 型管真空管集热器系统目前的价格测算,每平方的整体造价约 0. 25 万元/m2,每单元土建增加约2 万元,年运行费用约 0. 5 万元/年,42 ℃ /t 热水成本约 7 元,相比普通电热水器 20 元/t 的成本来说,每单元每年节省费用约 3 万元,综合测算投资回收期约 7. 5 年。这种做法的主要优点是:一是构架本身就是建筑造型的一部分,而且造型灵活多变,实现了热水器与建筑的完美结合。二是集热器处于建筑最高点,集热效率高,集热面积不完全受屋顶所限。三是完全解决了高层住宅使用问题:通过设干管循环和减压措施(减压阀)解决低层用户管道内冷水过多和超压问题,设热计量表计量每户用水量。四是简化了复杂的技术衔接:太阳热水器厂家在架空的框架内可根据实际需要安装集热器,不必担心对屋面的防水、保温和结构破坏等问题,同时解决了太阳能热水系统使用年限和建筑寿命方面的矛盾。五是屋顶的架空构架是一个多功能的生态构架:构架的安装不影响屋顶空间的使用,下方仍然是居民的活动场所和消防通道。另外集热器构架在夏天会成为良好的遮阳构件,改善了顶层住户的热工状态,成为了一个生态构件。就像密斯说过的当技术得到充分体现时就会升华为艺术,这样,此时的太阳能集热器既有实际功能,又是建筑构件,还满足了形式的需要,它的存在就会更具合理性。除了屋顶空间,高处的南向墙面和阳台也是日照时数较长的部位。因此,为了充分利用这一区域,出现了另外一种较好的应用策略:两段式。2 两段式集热器这种做法实际上是把住宅上下分别取不同的应用方式,适用于各种层数的单元式或通廊式高层住宅(图 2)。2. 1 系 统上下分别用不同的系统形式。下部由于日照时间不足,无法同层使用太阳热水器;因此,用集中供热水系统,住宅上部则用以每户为单位的分散供热水系统。2. 2 集热器形式和位置集中供热水系统集热器同屋顶架空集中式一样用承压的平板太阳能集热器或真空管太阳能集热器单元阵列。分散供热水系统的集热器则结合阳台或墙面安装,可设在阳台的栏板、阳台窗户两侧、墙面的窗间墙位置等,通过竖向有韵律的布置达到与建筑的较好结合(图 3)。虽然现在有不少应用实例,但安装主要取后期直接在阳台或墙上打支架固定的方式,缺乏统一设计,造成对整体的破坏。2. 3 水 箱集中供热水系统的水箱间位置及做法也同屋顶架空集中式。分散供热水系统的水箱则设在每户的阳台内或者结合空调室外机放置,这样集热器和水箱的距离较近,热损失较少。2. 4 管道井的设置屋顶水箱与低层用水点联系管道也设在建筑内原有加大的设备管道井内,上部的分散式供热水系统则不需专门的管道井。这种策略的优点:一是不同的系统形式分别解决了不同部位用户的太阳能利用和屋顶集热面积不足的问题。二是不同的处理方式和建筑都达到了较好的结合。缺点是分散式的使用、管理、维护对用户有干扰。三是这种方式对于塔式高层住宅不太适宜;另外集中式也存在后期因费用问题带来的纠纷。3 均分式集热器这种做法主要适用 12 层以上的单元式或通廊式高层住宅。实际上是把高层住宅转化为几个多层住宅的竖向叠加,利用每隔几层在南向外墙设一条水平悬挑隔板的方式解决太阳集热器的放置。这样既有效地利用了南向外墙,解决了低层部分的使用,又使住宅在竖向分为几段,形成有韵律的外部景观(图 4)。3. 1 系 统用集中 - 分散供热水系统,电加热。这种做法是把整个高层建筑竖向均匀分为几个独立系统,每个系统均为分体承压和强制循环。3. 2 集热器形式和位置这种做法的集热器也是用串并联的平板或真空管集热器,倾斜或者垂直、有规律地安装在从南向外墙悬挑出的水平隔板上,作为下部几层的集中集热区。隔板是每隔 5 ~ 6 层设置或根据造型需要设置,出挑宽度 700 mm 左右,在整个立面上形成几条横向的水平分隔带。隔板既能安装集热器,也可以作为检修通道,同时还能作为下层的遮阳板。3. 3 水 箱每户水箱设在南向阳台凹槽内或者结合空调室外机放置,这样水箱和集热器的距离相对较短,热损失较少。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

跪求...基于51单片机自动跟踪阳光太阳能热水器控制系统的设计

一、原理:

1.壁挂式太阳能热水器是通过平板集热器的翅片集热的,就是通过它将太阳的辐射装换成了热能,这样使得水箱中的水温不断的增高。

2.壁挂式太阳能热水器利用了热液密度小、冷液密度大的特点,然后通过壁挂式太阳能热水器的循环水管路线,在集热器和水箱之间形成一个冷热循环的自然循环使得水箱里面的温度升高,达到水加热的目的。

热水系统是平板集热器里面的翅片将吸收的太阳辐射转换成热能,使得集热器换热管内中的工质的温度不断升高,利用热液密度小,冷液密度大的特点,通过循环管路,在集热器与水箱之间形成冷水自上而下,热水自下而上的自然循环。通过这种循环,使水箱内的水逐渐升温。由于平板集热器内的工质为抗低温液体,能保持在零下40度不冻。所以即使高寒地区,一年四季也可正常运行。

二、构造

此种太阳能热水器,其结构部件主要由6部分组成,分别为:

1、太阳能集热器。其主要完成太阳能由光能到热能的接收和转换。应用在阳台壁挂上的太阳能集热器形式主要有平板型、U型真空管型和热管真空管型三种。

平板型太阳能集热器在欧美地区得到广泛使用,我国由于全玻璃真空管的大规模发展,所以平板集热器在我国的占有比例较低。但它具有热效率高、承压性好、不存在过热隐患等优点,是一种非常理想的与建筑结合的太阳能集热器。

U型真空管型太阳集热器是在全玻璃真空管中插入弯成U型的金属管,在U型管和玻璃真空管之间有与两者紧密接触的金属翅片,作为二者之间的传热体。这种真空集热管有两种形式,一种是选择性吸收涂层在玻璃管上,真空集热管吸热后通过翅片把热量传递给U型管中的介质,另一种是选择性吸收涂层在U型管的金属翅片上,U型管直接吸热传给介质。

热管真空管型太阳能集热器的热管元件安装在全玻璃真空管内,热管上有紧密接触的金属翅片,直接由翅片吸热,然后传递给热管中的流体介质,继而加热联集管中的水。热管真空管型太阳集热器是一种非常有前途的集热器,也非常适合与建筑进行结合设计。

2、贮热水箱。用于贮存由集热器转换而来的热量,供用户使用。水箱密闭承压,带温度表、压力安全阀,有的还配备电加热器。

目前市场上贮热水箱结构按换热方式的不同,主要分为三种:

一是双层内胆结构。在原热水器内胆外增加一个封闭夹层空间,该空间用于贮存换热介质,通过介质把太阳能集热器吸收的热能传递到内胆里的水中,从而把内胆里的水加热。

该结构的优点是换热速度快,换热介质在双层内胆的夹层里,能够把太阳能集热器吸收的热量快速地传递给内胆里的水。缺点是:焊缝较多,易出现焊接缺陷,同时由于夹层的间隙较小(一般在10mm左右),夹层内壁上无法进行防腐处理,夹层结构抗腐蚀性较差,影响使用寿命。

二是内置盘管结构。该结构是在原热水器内胆里增加换热盘管。换热介质在盘管内流动,通过盘管把热量传递给内胆里的水。此种换热结构的水箱在市场上占有率较高。

该结构的优点是盘管用铜管弯曲成形,防腐性能可靠,使用寿命长。缺点是:铜管的价格较贵,成本较高;由于盘管与内胆里的水接触面积一般会小于双层内胆结构的换热接触面积,因此换热速度比双层结构的换热方式慢。

三是内置小内胆结构。该结构是在原热水器内胆内再增加一个小内胆,用于换热。

该结构的优点是用这种结构可对大内胆和小内胆都做搪瓷防腐处理,解决双层内胆夹层内不能做防腐处理的缺点,延长了使用寿命,同时又比铜盘管结构节约成本。缺点是:一般是在小内胆和大内胆焊接成形后,再进行搪瓷,但这很难保证大内胆内壁和小内胆外壁上的搪瓷层厚度均匀;而如果先搪瓷小内胆,再把搪瓷后的小内胆焊接在大内胆上,最后搪瓷大内胆内壁,但是这个工艺不仅会造成小内胆二次搪烧,而且小内胆与大内胆焊接处的搪瓷质量也难以保证。

3、控制器。控制器是整个系统的大脑,通过各个位置传感器的电信号来控制整个系统的运行,目前有两种形式,一种是直接安装在水箱上的控制器,另一种为了用户的使用方便,安装在便于操作的卫生间或其他客户要求的位置。

控制方式有多种,可通过温差控制、最高温控制、定时加热控制等方式来调节水箱水温。

4、泵站。泵站内设置循环泵、流量指示调节器、单向阀、泄压阀和压力表等[2]。

循环泵一般用屏蔽式热水循环泵。流量指示调节器指示系统循环时的流量值,并根据流量的大小调节循环泵的转速。单向阀能在泵停止运转后防止倒流。泄压阀能保证系统的安全,当系统内的压力超过所能承受的最大值时开阀泄压。压力表显示系统中的压力值。

泵站和控制器可以组合成一体化的太阳能工作站。

5、膨胀罐。整个系统是闭式液体循环系统,运行压力一般设在0.6~0.8MPa。介质被加热时会出现体积和压力的膨胀,为了平衡容量和压力,系统中需要使用膨胀罐。膨胀罐是一个由隔膜将气体(一般是氮气)与系统分成两部分的密闭式容器,它可以吸收和容纳因受热而体积膨胀的液体,平衡系统的容积和压力。系统冷却时,预充氮气的压力将隔膜推到底部;系统升温时,压力增大,系统液体压力高于预充氮气的压力,加热膨胀的介质流入膨胀罐。

6、连接管路。集热器与贮热水箱,还有其他部件之间的连接一般用铜管或者PP-R管,外面包裹保温材料减小热损。

安装注意事项

安装阳台壁挂太阳能时候一定要与小区物业沟通,因为有的楼房外层是隔热层,不允许打孔。另外阳台壁挂式太阳能因为安装有一定的倾斜角度,会挡到楼下邻居的光线,造成邻里纠纷,因为是侵犯邻里权益,打官司往往失利,安装的时候要尽量避免这个问题。

参考资料:

百度百科词条 阳台壁挂式太阳能

对绿色能源的开发和利用是响应我国节能减排,环保政策的举措,太阳能作为可持续,零污染,具有很高的环保价值和经济效益,高效利用太阳能还可以有效替代部分化石能源,从而降低因石化能源燃烧导致的污染,减轻雾霾。然而农村太阳能丰富,却没能得到很好的利用,即便现有的发电产品对太阳能电池板也大多用固定支架。课题对此提出了能够跟踪太阳方向的云台支架,可实现太阳能电池板自动调节而始终面向光线最强的一面,提高太阳能发电的利用率。课题从云台,电机驱动,控制器,光线传感器,液晶显示等构成,课题成果不仅可以用到太阳能发电,还可以用到其它的向光场所,如天文观测等具有较高的实用价值。

随着时代的进步与科技的飞速发展,使得对能源的需求随之增加,对不可再生能源的过度依赖[1],从而使得不可再生能源的存储量急剧减少,一些不可再生能源(石油)被视为战略,据目前统计,煤炭、石油、天然气也会在岁月的实践中而日趋枯竭,消耗殆尽。这些不可再生能源的产生显然跟不上人类对其的需求,为更好的实现可持续发展,本课题提出了一种太阳追踪的可行方案,可以大大提升对太阳能的利用,减少对不可再生的过度依赖。

为了解决人们对不可再生的过度依赖和对清洁能源的高利用率。提出设计一款零污染高效率的装置——太阳追踪器。通过电机,控制器,光板光线传感器等元器件之间的相互配合,实现对太阳光照射最强的方位,实现全方位无死角跟踪,恰巧正好急需这样一款具有安全、环保、高效率、以及取之不尽用之不竭的特点,也很方便就可以获取,如风能和潮汐能一样是绝对的无污染清洁能源,这也就很好的阐述了光能的可行性[2]。——对此提出太阳跟踪装置设计与制作。

优点:太阳作为一个取之不尽用之不竭的能源。在《太阳能利用技术》[3]就有相关的提到,所到达地球表面能量等同于每秒向地球源源不断的投放了500万吨煤炭。阳光所到之处,皆为财富,免费使用的同时也不需要考虑任何的运输费用以及零污染等特性。

缺点:即便如此的看似完美无缺,也存在着两个致命性缺点[4]:一是能流密度很小;二是太阳的光照强度也会因为(天气、白夜等)因素的不同而有着很大的差距,很难长时间维持在恒定值,这也在一定程度上大大的影响了使用效率[5]。

国外太阳追踪器:对太阳能的使用在两千零四年到两千零六年太阳能的发电量都是惊人的4961MW[6],在一九九七年,美国的Blackace研制了单轴追踪器,热接收率提高了百分之十五......,后期围绕高效率,轻质量展开。在太阳能游艇、太阳能飞机、太阳能瓦片等方面得到运用,也见证了太阳能利用的高效率性[7]。

国内太阳追踪器:在应用市场上面得到了不断扩张,对于太阳能追踪器的利用那也是一个相当热门的谈话主题,途径多年的经验,将其用在了太阳能热水器、太阳能路灯以及西部、利用太阳能发电、太阳能供暖等等[8]。

更多的往往是用单轴跟踪的方式,相比之下更需要多轴,实现全方位无死角跟踪。

针对不同条件下,提出了自动控制和手动调节的两种工作方式:

其中以“自动模式”概述:在自动追寻的过程中,会自动判断光的强度的大小,若下面光照强度大于上面光照强度,STM32单片机就会直接驱动上端电机向下翻转;以便于在下午太阳西落的时候,获得更多的光照,若上面光照强度大于下面光照强度,STM32单片机就会直接驱动上端步进电机向上运动;若上下两个方位的光照强度均等,上端步进电机不进行动作。在上下光照均匀,左右方向运动的情况,右方位的光照强度大于左方位,STM32单片机就直接驱动下方位第一个步进电机向左方位一定角度转动;若左方位的光照强度大于右方位的光照强度,STM32单片机就直接驱动下方位第一个步进电机向左方位进行运动;当左右方位光度也保持几乎均应的时候光照,那么下方位的第一个电机也将保持不动。

“手动模式”状态进行使用按键手动来完成设备状态的切换。四个按键对应控制电机完成:上、下、左、右的翻转动作。通过点动的方式来控制驱动步进电机的实际运动。

在给设备系统进行上电后,系统最初为“自动模式”,这样可以更好的在不受人为干预的情况下实现对太阳能的最大接收。

编译语言的选取

方案一:C语言

简洁紧凑、灵活方便;运算符的丰富性;数据结构的丰富性;结构式语言;语法局限性小,程序编写自由度大;通过对物理地址的直接访问,使得完全可以对硬件实现直接控制;程序执行效率高。

C语言面向过程,最主要的在于算法和数据结构。通过一个过程,对输入进行运算处理得到输出。

方案二:C++

C++语言是面向对象的语言,在C的基础上添加了面向对象、模板等现在程序设计语言的特性。拓展了面向对象设计的内容,使之更加符合现代程序设计的需要。

看似C++比C多了很多优点和特性,但C++并不是所有场合都适用,很多嵌入式开发系统,都只提供了C语言的开发环境,而没有提供C++的开发环境。很多C++语言不愿意干的脏活累活,C语言干起来快活得很。而C++因为过于复杂,在这方面就稍逊一筹了。

方案三:Ja

Ja是一种解释性语言,Ja人气极高,但其代码由于需要在运行前进行解释因此性能表现更差。C++会被编译为二进制形式,因此其能够立即运行且速度更快。两个程序都足够大、而且C++的代码经过优化,两者的速度差就会变得很显著甚至很惊人,C++会比ja快很多。

从系统的复杂性出发来考虑,同时整个过程的计算量比较大,因此我选用了浮点数的计算方式,选用方案一作为整个系统编译方式。

2.2 控制系统总体方案选取

方案一:视日寻迹追踪模式

这样的一种模式,是基于天文学公式来得出太阳在不同时候的理论性的方位角和俯仰角,在后根据太阳每天在当地实际的运行轨迹位置编写控制算法程序,通过使用控制算法的方式来实现对太阳所在位置的计算,最后通过驱动太阳能板的两个步进电机来达到俯仰和方位上的转动。有点是对外界环境的依赖小,同是也存在弊端,那就是不管外界环境是何种天气,它都会以同样的工作方式运动,增加了不必要的能耗和元器件的寿命磨损。

太阳的俯仰角h和方位角A的两个位置参数,可表达如下所示:

δ为赤纬角,Φ是本地纬度,Ω表示太阳时角。

方案二:光电追踪模式

该模式的核心算法是利用光敏传感器对太阳位置进行检测。具体方法:在遮阳板两侧完全对称地安装光敏传感器,当太阳光垂直照射在太阳能光伏电池板上时,安装在两侧上的光敏传感器所产生的电信号相等,将这两路信号经过放大后送入比较器进行比较,此时不驱动步进电机进行转动。当太阳位置移动后,遮阳板对阳光进行遮挡,此时两侧的光敏传感器产生的电信号不相等,从而经过放大比较后产生差信号,电机开始运动,完成太阳跟踪过程。

通过两者的比较,选择方案二,简单易操作性,更适合被普及广泛使用,在同等使用条件下,最简方案,则是最优方案。

2.3主控系统选择

方案一:51单片机作为控制芯片。主要是表现在:主要控制参数是使用设置寄存器变量得以实现,在程序的修改方面,也是相当的方便快捷,成本也是相对低廉,性能与相对简单的太阳能跟踪装置系统匹配;数字化的控制系统,可以达到较高的精度。

方案二:用FPGA这样的大规模可编程逻辑器件,但本题属于控制类,即现场可编程门阵列[WJ1] ,它是在PAL、EPLD等可编程器件的基础上进-一步发展的产物。

方案三:ARM作为一种高性能嵌入式系统。考虑到方案的可实行性,STM32可以很好的解决数据处理和控制功能,十分适用于太阳能跟踪,虽是ARM价格昂贵,但是在后期的可拓展空间更大。[WJ2]

结合本次设计的任务要求,以及上诉三种方案的相对比较,最后选用方案三更适合本课题的设计标准,具体用STM32F103C8T6。

2.4电机选择

方案一:选择步进电机,然而步进电机的最大优点就是可以精确地控制电机步数和角度,缺点是价格昂贵。

方案二:选择直流电机。价格便宜是它的一大亮点,通过减速齿可以提高扭力,具有更大的负载,但是对电机的高精度控制直流电机达不到设计要求。

步进电机作为一种将电脉冲转换成相应角位移或线位移的电磁机械装置。通过直接控制输入的脉冲数量,直接控制其启停,启动是速度快,步距角和转速只取决于脉冲频率,受外界影响因素小。因此,对于本设计任务要求,为更精确地完成对角度值的精度把控,更好地利用太阳能,因此我选用方案一作为本次课程设计的驱动电机。

2.5步进电机驱动系统选择

方案一:L298专业电机驱动模块的选择,这类驱动模块的操作方便以及接口简单同时他们既可以驱动步进电机,也可驱动直流电机。

方案二:三极管等分立元件搭H桥。亮点在于实惠型,控制方式简单以及结构简单。优点的同时也伴随着弊端的存在,电流的承载能力比较小,相同的驱动能力受到限制,分立元件则体积较大同时稳定性也得不到保证。

方案三:用集成芯片,ULN2003。 .

达林顿管ULN2003,该芯片最多可一次驱动八块步进电机,本设计作用于两个步进电机,在实际的使用中,往往起着放点输出的作用用于驱动大负载的步进电机等。

本次设计综合考虑,依据实际设计需求,选择方案三作为步进电机的驱动系统。

2.6实体结构框架选择

方案一:两电机互相处以垂直状态,电机一是左右的转动而电机二是上下的转动,在不引入外界条件设备的情况下会出现运动死角,从成本化出发是不可取的。

方案二:将两个电机由之前的垂直安装,改变为大于90°的安装,在不引入外部设备的情况下,可以很好的避开运动死角,从而可实现全方位无死角跟踪,综合上述情况选择方案二进行本次的实体结构设计。

2.2系统设计

2.2.1 单片机构成如下图:

逻辑不通顺,要指出FPGA不适用于本题的缺点

STM32整体比FPGA便宜很多,这条论证建议修改,或者做一个成本对比表再下结论

控制方式:第一步就是将数据程序输入到输入设备里面,输入设备将程序传输给运算器CPU和存储器,各自程序都对应的传输到控制器里面,由控制器完成完成相互的指令传递,最后都是作用于输出设备,在输出设备上显示出来的结果就是最初程序所要表达的效果。

2.2.2 系统整体控制框图如下:

图2–2–2 系统整体控制框图

控制方式:完成整个驱动控制,第一步就是感光元件及光敏电阻传感器对外界光的集,完成电压跟随,通过A/D转换,然后通过电压的比较,使用STM32F103C8T6单片机控制电机的驱动,最终完成不同电机在不同的光照强度情况下不同方向的运动,最后实现对光的最大化接收。

2.2.3 电机控制框图如下:

图2–2–3 电机控制框图

控制方式:通过光敏传感器对光的集,实现了最后对电机运动方式的不同选择和控制。

当感光元器件第一组接受到的光照强度值大于其它三个方位的光照强度时,那么电机完成水平方向的电机正转,并返回最初状态。

当感光元器件第二组接受到的光照强度值大于其它三个方位的光照强度时,那么电机完成水平方向的电机反转,并返回最初状态。

当感光元器件第三组接受到的光照强度值大于其它三个方位的光照强度时,那么电机完成垂直方向的电机正转,并返回最初状态。

当感光元器件第四组接受到的光照强度值大于其它三个方位的光照强度时,那么电机完成垂直方向的电机反正,并返回最初状态。

当所有的感光元器件都处于接受管的均匀照射时,此时的光照强度几乎大小相等,也就电机的状态保持不运动。

2.2.4整体电路原理图如下:

图2-2-4 整体电路原理图

系统软件总体设计流程如图 2-2-4 所示。系统启动后,软件先进行初始化等工作,当程序初始化完成后,通过 感光元器件获得当前的光照强度,然后根据初始化的参数,控制步进电机将太阳能光伏板转动到理论的初始状态,预定方位。将太阳能光伏板转动到理论位置后,程序开始判断步进电机转动模式是手动模式还是自动,初始默认状态是自动跟踪模式。

当手动模式时,人为调整电机控制上下左右 4 个按键的状态,使得电机按照人们预想的方向进行运动,以此来得以控制四个方位的不同垂直转动和水平移动的俯仰角和方位角。当程序判断为自动模式后,开始自动读取检测电路的返回信号,当检测到是各个方位的光照强度值有较大的的差异是,那么单片机就发出控制指令控制步进电机进行转动,升压模块是为了给整个系统稳定供电而存在。