1.电子元器件 的问题

2.电子元器件组件PCB板的常用器件

3.电路板上的TR、TH、J、L、CN、K、X都代表什么电子元件?

4.50个趣味电子小制作的作品目录

50个常用元器件图片_50个常用元器件

什么是三极管 (也称晶体管)在中文含义里面只是对三个引脚的放大器件的统称,我们常说的三极管,可能是 如图所示的几种器件, 可以看到,虽然都叫三极管,其实在英文里[1]面的说法是千差万别的,三极管这个词汇其实也是中文特有的一个象形意义上的的词汇 电子三极管 Triode 这个是英汉字典里面“三极管”这个词汇的唯一英文翻译,这是和电子三极管最早出现有关系的,所以先入为主,也是真正意义上的三极管这个词最初所指的物品。其余的那些被中文里叫做三极管的东西,实际翻译的时候是绝对不可以翻译成Triode的,否则就麻烦大咯,严谨的说,在英文里面根本就没有三个脚的管子这样一个词汇!!! 电子三极管 Triode (俗称电子管的一种) 双极型晶体管 BJT (Bipolar Junction Transistor) J型场效应管 Junction gate FET(Field Effect Transistor) 金属氧化物半导体场效应晶体管 MOS FET ( Metal Oxide Semi-Conductor Field Effect Transistor)英文全称 V型槽场效应管 VMOS (Vertical Metal Oxide Semiconductor ) 注:这三者看上去都是场效应管,其实结构千差万别 J型场效应管 金属氧化物半导体场效应晶体管 V沟道场效应管 是 单极(Unipolar)结构的,是和 双极(Bipolar)是对应的,所以也可以统称为单极晶体管(Unipolar Junction Transistor) 其中J型场效应管是非绝缘型场效应管,MOS FET 和VMOS都是绝缘型的场效应管 VMOS是在 MOS的基础上改进的一种大电流,高放大倍数(跨道)新型功率晶体管,区别就是使用了V型槽,使MOS管的放大系数和工作电流大幅提升,但是同时也大幅增加了MOS的输入电容,是MOS管的一种大功率改经型产品,但是结构上已经与传统的MOS发生了巨大的差异。VMOS只有增强型的而没有MOS所特有的耗尽型的MOS管

编辑本段三极管的发明

1947年12月23日,美国新泽西州墨累山的贝尔实验室里,3位科学家——巴丁博士、布菜顿博士和肖克莱博士在紧张而又有条不紊地做着实验。他们在导体电路中正在进行用半导体晶体把声音信号放大的实验。3位科学家惊奇地发现,在他们发明的器件中通过的一部分微量电流,竟然可以控制另一部分流过的大得多的电流,因而产生了放大效应。这个器件,就是在科技史上具有划时代意义的成果——晶体管。因它是在圣诞节前夕发明的,而且对人们未来的生活发生如此巨大的影响,所以被称为“献给世界的圣诞节礼物”。另外这3位科学家因此共同荣获了1956年诺贝尔物理学奖。 晶体管促进并带来了“固态革命”,进而推动了全球范围内的半导体电子工业。作为主要部件,它及时、普遍地首先在通讯工具方面得到应用,并产生了巨大的经济效益。由于晶体管彻底改变了电子线路的结构,集成电路以及大规模集成电路应运而生,这样制造像高速电子计算机之类的高精密装置就变成了现实。

编辑本段工作原理

晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。 对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。 当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。 在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)极基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。 由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得: Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即: β1=Ic/Ib 式中:β1--称为直流放大倍数, 集电极电流的变化量△Ic与基极电流的变化量△Ib之比为: β= △Ic/△Ib 式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。 三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。 三极管放大时管子内部的工作原理 1、发射区向基区发射电子 电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。 2、基区中电子的扩散与复合 电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。 3、集电区收集电子 由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。

编辑本段三极管的分类:

a.按材质分: 硅管、锗管 b.按结构分: NPN 、 PNP。如图所示

。 c.按功能分: 开关管、功率管、达林顿管、光敏管等. 贴片三极管

d. 按功率分:小功率管、中功率管、大功率管 e.按工作频率分:低频管、高频管、超频管 f.按结构工艺分:合金管、平面管 g.按安装方式:插件三极管、贴片三极管 插件三极管

编辑本段三极管的主要参数

a. 特征频率fT

:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作.

b. 工作电压/电流

用这个参数可以指定该管的电压电流使用范围.

c. hFE

电流放大倍数.

d. VCEO

集电极发射极反向击穿电压,表示临界饱和时的饱和电压.

e. PCM

最大允许耗散功率.

f. 封装形式

指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现.

编辑本段判断基极和三极管的类型

三极管的脚位判断,三极管的脚位有两种封装排列形式,如右图:

三极管是一种结型电阻器件,它的三个引脚都有明显的电阻数据,测试时(以数字万用表为例,红笔+,黒笔-)我们将测试档位切换至 二极管档 (蜂鸣档)标志符号如右图:

正常的NPN结构三极管的基极(B)对集电极(C)、发射极(E)的正向电阻是430Ω-680Ω(根据型号的不同,放大倍数的差异,这个值有所不同)反向电阻无穷大;正常的PNP 结构的三极管的基极(B)对集电极(C)、发射极(E)的反向电阻是430Ω-680Ω,正向电阻无穷大。集电极C对发射极E在不加偏流的情况下,电阻为无穷大。基极对集电极的测试电阻约等于基极对发射极的测试电阻,通常情况下,基极对集电极的测试电阻要比基极对发射极的测试电阻小5-100Ω左右(大功率管比较明显),如果超出这个值,这个元件的性能已经变坏,请不要再使用。如果误使用于电路中可能会导致整个或部分电路的工作点变坏,这个元件也可能不久就会损坏,大功率电路和高频电路对这种劣质元件反应比较明显。 尽管封装结构不同,但与同参数的其它型号的管子功能和性能是一样的,不同的封装结构只是应用于电路设计定的使用场合的需要。 要注意有些厂家生产一些不规范元件,例如C945正常的脚位是BCE,但有的厂家出的此元件脚位排列却是EBC,这会造成那些粗心的工作人员将新元件在未检测的情况下装入电路,导致电路不能工作,严重时烧毁相关联的元器件,比如电视机上用的开关电源。

在我们常用的万用表中,测试三极管的脚位排列图: 先设三极管的某极为“基极”,将黑表笔接在设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),或者都小(几百至几K),对换表笔重复上述测量,若测得两个阻值相反(都很小或都很大),则可确定设的基极是正确的,否则另设一极为“基极”,重复上述测试,以确定基极. 当基极确定后,将黑表笔接基极,红表笔笔接其它两极若测得电阻值都很少,则该三极管为NPN,反之为PNP. 判断集电极C和发射极E,以NPN为例: 把黑表笔接至设的集电极C,红表笔接到设的发射极E,并用手捏住B和C极,读出表头所示C,E电阻值,然后将红,黑表笔反接重测.若第一次电阻比第二次小,说明原设成立. 体三极管的结构和类型 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。 三极管的封装形式和管脚识别 常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律, 底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。 目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。 晶体三极管的电流放大作用 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体三极管的三种工作状态 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。 放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。 饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。 根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。 使用多用电表检测三极管 三极管基极的判别:根据三极管的结构示意图,我们知道三极管的基极是三极管中两个PN结的公共极,因此,在判别三极管的基极时,只要找出两个PN结的公共极,即为三极管的基极。具体方法是将多用电表调至电阻挡的R×1k挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极。如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;如还没找到,则红表笔再换一下,再测两次。如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。这样最多没量12次,总可以找到基极。 三极管类型的判别: 三极管只有两种类型,即PNP型和NPN型。判别时只要知道基极是P型材料还N型材料即可。当用多用电表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P型材料,三极管即为NPN型。如果红表笔接基极导通,则说明三极管基极为N型材料,三极管即为PNP型。 三极管的基本放大电路 基本放大电路是放大电路中最基本的结构,是构成复杂放大电路的基本单元。它利用双极型半导体三极管输入电流控制输出电流的特性,或场效应半导体三极管输入电压控制输出电流的特性,实现信号的放大。本章基本放大电路的知识是进一步学习电子技术的重要基础。

基本放大电路一般是指由一个三极管或场效应管组成的放大电路。从电路的角度来看,可以将基本放大电路看成一个双端口网络。放大的作用体现在如下方面: 1.放大电路主要利用三极管或场效应管的控制作用放大微弱信号,输出信号在电压或电流的幅度上得到了放大,输出信号的能量得到了加强。 2.输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。 共射组态基本放大电路的组成 共射组态基本放大电路是输入信号加在加在基极和发射极之间,耦合电容器C1和Ce视为对交流信号短路。输出信号从集电极对地取出,经耦合电容器C2隔除直流量,仅将交流信号加到负载电阻RL之上。放大电路的共射组态实际上是指放大电路中的三极管是共射组态。 在输入信号为零时,直流电源通过各偏置电阻为三极管提供直流的基极电流和直流集电极电流,并在三极管的三个极间形成一定的直流电压。由于耦合电容的隔直流作用,直流电压无法到达放大电路的输入端和输出端。 当输入交流信号通过耦合电容C1和Ce加在三极管的发射结上时,发射结上的电压变成交、直流的叠加。放大电路中信号的情况比较复杂,各信号的符号规定如下:由于三极管的电流放大作用,ic要比ib大几十倍,一般来说,只要电路参数设置合适,输出电压可以比输入电压高许多倍。uCE中的交流量 有一部分经过耦合电容到达负载电阻,形成输出电压。完成电路的放大作用。 由此可见,放大电路中三极管集电极的直流信号不随输入信号而改变,而交流信号随输入信号发生变化。在放大过程中,集电极交流信号是叠加在直流信号上的,经过耦合电容,从输出端提取的只是交流信号。因此,在分析放大电路时,可以用将交、直流信号分开的办法,可以分成直流通路和交流通路来分析。 放大电路的组成原则: 1.保证放大电路的核心器件三极管工作在放大状态,即有合适的偏置。也就是说发射结正偏,集电结反偏。 2.输入回路的设置应当使输入信号耦合到三极管的输入电极,形成变化的基极电流,从而产生三极管的电流控制关系,变成集电极电流的变化。 3.输出回路的设置应该保证将三极管放大以后的电流信号转变成负载需要的电量形式(输出电压或输出电流)。

三极管的符号

中间横线是基极B,另一斜线是集电极C,箭头的是发射极E。 三极管的符号

三极管的命名

: 国产半导体器型号的命名方法(摘自国家标准GB249_74) 型号组成 第一部分 第二部分 第三部分 第四部分 第五部分

用阿拉伯数字表示器件电极数 用字母表示器件的材料和极性 用汉语拼音字母表示器件类型 用数字表示器件序号 用汉语拼音字母表示规格

符号及意义 2 二极管 A N型锗材料 P 普通管

B P型锗材料 V 微波管

C N型硅材料 W 稳压管

D P型硅材料 C 参量管

3 三极管 A PNP锗材料 Z 整流管

B NPN锗材料 L 整流管

C PNP型硅材料 S 隧道管

D NPN型硅材料 N 阻尼管

E 化合物材料 U 光电器件

K 开关器

X 低频小功率管

G 高频小功率管

D 低频大功率管

A 高频大功率管

T 半导体闸流管

Y 体效应器件

B 雪崩管

J 阶跃恢复管

CS 场效应器

BY 半导体特殊器件

FH 复合管

PIN PIN型管

JG 激光器件

三极管的选型与替换

: 1.首先要进行参数对比,如果不知道参数可以先在网络收搜索他的规格书,了解其参数。行业里大家用的多的是://.alldatasheet一个英文网站; 2.知道参数,尤其是BVCBO,BVCEO,BVEBO,HFE,ft,VCEsat参数。通过各个参数的 比较,找相似的产品。即使知道了参数以后也不好找,一些书籍都过时了,没有收集新的产品进去。最近看到一个创意不错的网站,半导体百事通网 有个参数选型栏目,可以针对半导体器件的参数对照组合筛选来选型://.semibest 直插封装的型号 贴片的型号 极性 Ft VCEO Ic hfe 配对型号 9011 1T NPN 150MHz 18V 100mA 28~132 9012 2T PNP 150MHz 25V 500mA 64~144 9013 9013 J3 NPN 9014 J6 NPN 150MHz 18V 100mA 60~400 9015 9015 M6 PNP 9016 Y6 NPN 500MHz 20V 25mA 28~ 9018 J8 NPN 700MHZ 12V 100mA 28~72 S8050 J3Y NPN 100MHz 25V 1.5A 45~300 S8550 S8550 2TY PNP 8050 Y1 NPN 100MHz 25V 1A 85~300 8550 8550 Y2 PNP 2SA1015 BA PNP 2SC1815 HF NPN 80MHz 50V 150mA 70~700 1015 2SC945 CR NPN 250MHz 50V 100mA 200~600 2SA733 CS MMBT3904 1AM NPN 300MHz 60V 100mA 300@10mA 3906 MMBT3906 2A PNP MMBT2222 1P NPN 250MHz 60V 600mA 100@150mA MMBT5401 2L PNP 100MHz 150V 500mA 40~200 5551 MMBT5551 G1 NPN MMBTA42 1D NPN 50MHz 300V 100mA 40@10mA MMBTA92 2D PNP BC807-16 5A PNP BC807-25 5B PNP 80MHz 45V 500mA 250@100mA BC817-25 BC807-40 5C PNP 80MHz 45V 500mA 250@100mA BC817-40 BC817-16 6A NPN BC817-25 6B NPN BC817-40 6C NPN BC846A 1A NPN 250MHz 65V 100mA 140 BC856 BC846B 1B NPN 250 BC847A 1E NPN 45V BC857 BC847B 1F BC847C 1G NPN 420~800 BC848A 1J NPN 30V BC848B 1K BC848C 1L BC856A 3A PNP BC856B 3B BC857A 3E BC857B 3F BC858A 3J BC858B 3K BC858C 3L 2SC3356 R23 NPN 7GHz 20V 100mA 50~300 2SC3838 AD 带反向二极管的N沟道FET 2N7002 702 40V 400mA BSS138 50V 200mA 下面是带电阻的三极管 UN2111 V1 NNP 150MHz 50V 100mA UN2112 V2 UN2113 V3 UN2211 V4 UN2212 V5 UN2213 V6 ************************************************

编辑本段测判三极管的口诀

三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。

1: 三颠倒,找基极

大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管。 测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。图2绘出了万用电表欧姆挡的等效电路。红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。 定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。

2:PN结,定管型

找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

3:顺箭头,偏转大

找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。 (1) 对于NPN型三极管,穿透电流的测量电路。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致顺箭头,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。

4:测不出,动嘴巴

若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。其中人体起到直流偏置电阻的作用,目的是使效果更加明显。 [2] 三极管的哲学意义: 三极管是人类最伟大的发明,诺贝尔奖也无法呈现出“他”巨大的历史意义,看似简单又极其普通的信号放大功能,本质上是连接了“意识”与“行为”,而此正是生命的特征。可以说三极管的发明标识着人类具备了只有上帝才拥有的创造生命的能力。

电子元器件 的问题

查看方法:

Altium下Miscellaneous Devices.Intlib元件库中常用元件有:

电阻系列(res*)排组(res pack*)

电感(inductor*)

电容(cap*,capacitor*)

二极管系列(diode*,d*)

三极管系列(npn*,pnp*,mos*,MOET*,MEET*,jfet*,IGBT*)

运算放大器系列(op*)

继电器(relay*)

8位数码显示管(dpy*)

电桥(bri*bridge)

光电耦合器( opto* ,optoisolator )

光电二极管、三极管(photo*)

模数转换、数模转换器(adc-8,dac-8)

晶振(xtal)

电源(battery)喇叭(speaker)麦克风(mic*)小灯泡(lamp*)响铃(bell)

天线(antenna)

保险丝(fuse*)

开关系列(sw*)跳线(jumper*)

变压器系列(trans*)

晶振(crystal oscillator)的元件库名称是Miscellaneous Devices.Intlib, 在search栏中输入 *soc 即可。

2

Altium下Miscellaneous connectors.Intlib元件库中常用元件有:

(con*,connector*)

(header*)

(MHDR*)

定时器NE555P 在库TI analog timer circit.Intlib中

电阻 AXIAL

无极性电容 RAD

电解电容 RB-

电位器 VR

二极管 DIODE

三极管 TO

电源稳压块78和79系列 TO-126H和TO-126V

场效应管 和三极管一样

整流桥 D-44 D-37 D-46

单排多针插座 CON SIP

双列直插元件 DIP

晶振 XTAL1

电阻:RES1,RES2,RES3,RES4;封装属性为axial系列

无极性电容:cap;封装属性为RAD-0.1到rad-0.4

电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0

电位器:pot1,pot2;封装属性为vr-1到vr-5

二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率)

三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林

顿管)

电源稳压块有78和79系列;78系列如7805,7812,7820等

79系列有7905,7912,7920等

常见的封装属性有to126h和to126v

整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)

电阻: AXIAL0.3-AXIAL0.7 其中0.4-0.7指电阻的长度,一般用AXIAL0.4

瓷片电容:RAD0.1-RAD0.3. 其中0.1-0.3指电容大小,一般用RAD0.1

电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小.一般<100uF用

RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6

二极管: DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4

发光二极管:RB.1/.2

集成块: DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8

贴片电阻

0603表示的是封装尺寸与具体阻值没有关系

但封装尺寸与功率有关 通常来说

0201 1/20W

0402 1/16W

0603 1/10W

0805 1/8W

1206 1/4W

电容电阻外形尺寸与封装的对应关系是:

0402=1.0x0.5

0603=1.6x0.8

0805=2.0x1.2

1206=3.2x1.6

1210=3.2x2.5

1812=4.5x3.2

2225=5.6x6.5

电子元器件组件PCB板的常用器件

电子元件知识——电阻器 ※ 电阻 :导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。 ※ 电阻的型号命名方法 :国产电阻器的型号由四部分组成(不适用敏感电阻)① 主称 ② 材料 ③ 分类 ④ 序号 ※ 电阻器的分类 :①线绕电阻器 ②薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器 ③实心电阻器 ④敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。 ※ 电阻器阻值标示方法 : 1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。 2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。表示允许误差的文字符号文字符号:D F G J K M 允许偏差分别为:±0.5% ±1% ±2% ±5% ±10% ±20% 3、数码法:在电阻器上用三位数码表示标称值的标志方法。数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。偏差通常用文字符号表示。 4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。国外电阻大部分用色标法。 黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20% 当电阻为四环时,最后一环必为金色或银色,前两位为有效数字, 第三位为乘方数,第四位为偏差。 当电阻为五环时,最後一环与前面四环距离较大。前三位为有效数字, 第四位为乘方数,第五位为偏差。 贴片电阻的阻值识别 :(在通常的贴片电阻电阻表面都标识数字,或用字母来表示,阻值数法如下。 1.第一、二位数代表的是电阻的实数。 2.第三位开始的数字如是0就代表几十欧(10~99欧之间)列:100就为10欧的电阻、990为99欧的电阻 3.第三位开始的数字如是1就代表几百欧(100~999欧之间)例:101为100欧、151为150欧、951为950欧 4.第三位开始的数字如是2就代表几千欧(1000~9999欧之间)例:102为1K、152为1.5K、992为9.9K 5.第三位开始的数字如是3就代表几十K(10K~99K之间)例:103为10K、223为22K、993为99K 6.第三位开始的数字如是4就代表几百K(100K~999K之间)例:104为100K、204为200K、854为850K 7.第三位开始的数字如是5就代表几M(1M~9.9之间)例:105为1M、155为1.5M\955为9.5M 8.第三位开始的数字如是6就代表十M(100K~999K之间)例:106为10M\566为56M 9.对于四个数字的标法就是前三位为实数,第四位为倍数.1001为1K、1002为10K、1005为10M 电子元件知识——电容器 ※ 电容 :是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容的符号是C。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路, 能量转换,控制电路等方面。用C表示电容,电容单位有法拉(F)、微法拉(uF)、皮法拉(pF),1F=10*6uF=10*12pF 1 法拉( F ) = 1000000 微法( μF ) 1 微法( μF ) = 1000 纳法( nF ) = 1000000 皮法( pF )※ 电容器的型号命名方法 :国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。依次分别代表名称、材料、分类和序号。 ※ 电解电容器的极性判别方法 :用万用表测量就可以了,先把电解电容放电,然后将表笔接到两端,摆动大的那次就对了,但要注意:指针表的正极对的是电容的负极,数字表相反,而且,两次测量之间,电容必须放电。(2)用引脚长短来区别正负极长脚为正,短脚为负;电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。 ※ 电容器的分类 : 按照其极性分为二大类:有极性电容器(如电解电容)和无极性电容器。 按照结构分三大类:固定电容器、可变电容器和微调电容器。 按电解质分类有:有机介质电容器、无机介质电容器、电解电容器和空气介质电容器等。 按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器。 ※ 电容器容量标示 : 1、直标法:用数字和单位符号直接标出。如01uF表示0.01微法,有些电容用“R”表示小数点,如R56表示0.56微法。 2、文字符号法:用数字和文字符号有规律的组合来表示容量。如p10表示0.1pF,1p0表示1pF,6P8表示6.8pF, 2u2表示2.2uF. 3、色标法:用色环或色点表示电容器的主要参数。电容器的色标法与电阻相同。 电容器偏差标志符号:+100%-0--H、+100%-10%--R、+50%-10%--T、+30%-10%--Q、+50%-20%--S、+80%-20%--Z。 ※ 常用电容器 :铝电解电容器、钽电解电容器、薄膜电容器、瓷介电容器、独石电容器、纸质电容器、微调电容器、陶瓷电容器、玻璃釉电容器、云母和聚苯乙烯介质电容器。 电子元件知识——电感器 ※ 电感器 :电感线圈是由导线一圈*一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。在电子制作中虽然使用得不是很多,但它们在电路中同样重要。电感器和电容器一样,也是一种储能元件,它能把电能转变为磁场能,并在磁场中储存能量。电感器用符号L表示,它的基本单位是亨利(H),常用毫亨(mH)为单位。 ※ 电感器的分类 : 按电感形式分类:固定电感、可变电感。 按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。 按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 ※ 电感器作用特性 :它经常和电容器一起工作,构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了阻流圈、变压器、继电器等;电感器的特性恰恰与电容的特性相反,它具有阻止交流电通过而让直流电通过的特性。 收音机上就有不少电感线圈,几乎都是用漆包线绕成的空心线圈或在骨架磁芯、铁芯上绕制而成的。有天线线圈(它是用漆包线在磁棒上绕制而成的)、中频变压器(俗称中周)、输入输出变压器等等。 ※ 常用电感器 :单层线圈、蜂房式线圈、铁氧体磁芯和铁粉芯线圈、铜芯线圈、色码电感器、阻流圈(扼流圈)、偏转线圈 ※ 变压器 :是由铁芯和绕在绝缘骨架上的铜线圈线构成的。绝缘铜线绕在塑料骨架上,每个骨架需绕制输入和输出两组线圈。线圈中间用绝缘纸隔离。绕好后将许多铁芯薄片插在塑料骨架的中间。这样就能够使线圈的电感量显著增大。变压器利用电磁感应原理从它的一个绕组向另儿个绕组传输电能量。变压器在电路中具有重要的功能:耦合交流信号而阻隔直流信号,并可以改变输入输出的电压比;利用变压器使电路两端的阻抗得到良好匹配,以获得最大限度的传送信号功率。 ※ 继电器 :就是电子机械开关,它是用漆包铜线在一个圆铁芯上绕几百圈至几千圈,当线圈中流过电流时,圆铁芯产生了磁场,把圆铁芯上边的带有接触片的铁板吸住,使之断开第一个触点而接通第二个开关触点。当线圈断电时,铁芯失去磁性,由于接触铜片的弹性作用,使铁板离开铁芯,恢复与第一个触点的接通。因此,可以用很小的电流去控制其他电路的开关。整个继电器由塑料或有机玻璃防尘罩保护着,有的还是全密封的,以防触电氧化。 电子元件知识——半导体器件 ※ 半导体 : 是一种具有特殊性质的物质,它不像导体一样能够完全导电,又不像绝缘体那样不能导电,它介于两者之间,所以称为半导体。半导体最重要的两种元素是硅(读 “gui” )和锗(读 “zhe” )。 ※ 半导体分类 :半导体主要分为二极管、三极管、可控硅、集成电路。 ※ 二极管分类 : 用于稳压的稳压二极管,用于数字电路的开关二极管,用于调谐的变容二极管,以及光电二极管等,最常看见的是发光二极管、 整流二极管……二极管在电路中用“ D ”表示;发光二极管用“ LED ”表示;稳压二极管用“ Z ”表示。※ 二极管极性判别 :(1)普通二极管:一般把极性标示在二极管的外壳上。大多数用一个不同颜色的环来表示负极,有的直接标上“-”号。(2)发光二极管的极性判别可以从管脚和管子内部结构来判别,如果管脚不是被剪过的,目前普遍认为发光二极管的长管脚是正极,短管脚是负极,和立式电解电容的极性辨别是一致的。从管芯内部结构来看,管芯是由大小瓣两部分组成,大瓣上有一圆锥坑以便聚光提高亮度,中间通过一细金属线将两瓣连在一起,与管芯小瓣部分相接的是长脚正极,与管芯大瓣部分相接是短脚负极。(3) 万用表欧姆档来判断 , 当正向导通时电阻值小,用黑表笔连接的就是二极管的正极。顺口溜叫 “ 黑小正、红大负 ” 。 ※ 普通二极管的检测 :二极管的极性通常在管壳上注有标记,如无标记,可用万用表电阻档测量其正反向电阻来判断(一般用R×100或×1K档) ※ 普通发光二极管的检测 :(1)利用具有×10kΩ挡的指针式万用表可以大致判断发光二极管的好坏。正常时,二极管正向电阻阻值为几十至200kΩ,反向电阻的值为∝。如果正向电阻值为0或为∞,反向电阻值很小或为0,则易损坏。这种检测方法,不能实地看到发光管的发光情况,因为×10kΩ挡不能向LED提供较大正向电流。(2) 用3V稳压源或两节串联的干电池及万用表(指针式或数字式皆可)可以较准确测量发光二极管的光、电特性。为此可按图10所示连接电路即可。如果测得VF在1.4~3V之间,且发光亮度正常,可以说明发光正常。如果测得VF=0或VF≈3V,且不发光,说明发光管已坏。 ※ 红外发光二极管的检测 :由于红外发光二极管,它发射1~3μm的红外光,人眼看不到。通常单只红外发光二极管发射功率只有数mW,不同型号的红外LED发光强度角分布也不相同。红外LED的正向压降一般为1.3~2.5V。正是由于其发射的红外光人眼看不见,所以利用上述可见光LED的检测法只能判定其PN结正、反向电学特性是否正常,而无法判定其发光情况正常否。为此,最好准备一只光敏器件(如2CR、2DR型硅光电池)作接收器。用万用表测光电池两端电压的变化情况。来判断红外LED加上适当正向电流后是否发射红外光。其测量电路如图11所示。 ※ 三极管 :三极管就是由二个PN结构成三个极的电子元件,基极(B)集电极(C)、发射极(E)。 ※ 三极管作用 :三极管在电路中主要起电流放大和开关作用;也起隔离作用。 ※ 三极管命名 :中国半导体器件型号命名方法 半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、激光器件的型号命名只有第三、四、五部分)组成。 第一部分:用数字表示半导体器件有效电极数目。2-二极管、3-三极管 第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极管时:A-N型锗材料、B-P型锗材料、C-N型硅材料、D-P型硅材料。表示三极管时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型硅材料、D-NPN型硅材料。 第三部分:用汉语拼音字母表示半导体器件的内型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc<1W)、G-高频小功率管(f>3MHz,Pc<1W)、D-低频大功率管(f<3MHz,Pc>1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-激光器件。 第四部分:用数字表示序号第五部分:用汉语拼音字母表示规格号 例如:3DG18表示NPN型硅材料高频三极管 ※ 三极管分类 1)按材料和极性分有硅/锗材料的NPN与PNP三极管。2)按功率分有小功率三极管、中功率三极管、大功率三极管。 3)按用途分有高、中频放大管、低频放大管、低噪声放大管、光电管、开关管、高反压管、达林顿管、带阻尼的三极管等。 4)按工作频率分有低频三极管、高频三极管和超高频三极管。5)按制作工艺分有平面型三极管、合金型三极管、扩散型三极管。 6)按外形封装的不同可分为金属封装三极管、玻璃封装三极管、陶瓷封装三极管、塑料封装三极管等。 ※ 三极管引脚极性 :插件引脚图示(1),贴件引脚图示(2)下图为9014。般中小功率的三极管都是遵守左向右依次为e b c(条件是 中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为 e b c ) ※ 场效应管 :MOS场效应管即金属-氧化物-半导体型场效应管,英文缩写为MOET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。 金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。当栅G 电压VG 增大时,p 型半导体表面的多数载流子枣空穴逐渐减少、耗尽,而电子逐渐积累到反型。当表面达到反型时,电子积累层将在n+ 源区S 和n+ 漏区D 之间形成导电沟道。当VDS ≠0 时,源漏电极之间有较大的电流IDS 流过。使半导体表面达到强反型时所需加的栅源电压称为阈值电压VT 。当VGS>VT 并取不同数值时,反型层的导电能力将改变,在相同的VDS 下也将产生不同的IDS , 实现栅源电压VGS 对源漏电流IDS 的控制※ 场效应分类 :场效应管主要有结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。绝缘栅型场效应管的衬底(B)与源析(S)连在一起,它的三个极分别为栅极(G)、漏极(D)和源极(S)。晶体管分NPN和PNP管,它的三个极分别为基极(b)、集电极(c)、发射极(e)。场效应管的G、D、S极与晶体管的b、c、e极有相似的功能。绝缘栅型效应管和结型场效应管的区别在于它们的导电机构和电流控制原理根本不同,结型管是利用耗尽区的宽度变化来改变导电沟道的宽窄以便控制漏极电流,绝缘栅型场效应管则是用半导体表面的电场效应、电感应电荷的多少去改变导电沟道来控制电流。它们性质的差异使结型场效应管往往运用在功放输入级(前级),绝缘栅型场效应管则用在功放末级(输出级)。场效应管的工作原理和三极管其本一样,只是他们一个是压控型元件,一个是电流控制元件,场效应管只有一个PN结,如图所示1-1 ※ 场效应分类使用注意事项及检测方法 :MOS场效应管比较“娇气”。这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。因此出厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并取相应的防静电感措施。测量之前,先把人体对地短路后,才能摸触MOET的管脚。最好在手腕上接一条导线与大地连通,使人体与大地保持等电位。再把管脚分开,然后拆掉导线。 将万用表拨于R×100档,首先确定栅极。若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。日本生产的3SK系列产品,S极与管壳接通,据此很容易确定S极。 将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。双栅MOS场效应管有两个栅极G1、G2。为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。 目前有的MOET管在G-S极间增加了保护二极管,平时就不需要把各管脚短路了。对于其它相关认识,我不做细说,只要大家能认识就行了。 ※ 集成电路 : 集成电路是一种用特殊工艺,将晶体管、电阻、电容等元件集成在硅基片上而形成的具有一定功能的器件,英文为缩写为IC,也俗称芯片。在电路中用“U”表示。 ※ 集成电路分类 : 集成电路根据不同的功能用途分为模拟和数字两大派别,而具体功能更是数不胜数,其应用遍及人类生活的方方面面。集成电路根据内部的集成度分为大规模中规模小规模三类。其封装又有许多形式。“双列直插”和“单列直插”的最为常见。消费类电子产品中用软封装的IC,精密产品中用贴片封装的IC等。 ※ 集成电路使用注意事项 :大部份IC用CMOS元件为核心集成; 对于CMOS型IC,特别要注意防止静电击穿IC,最好也不要用未接地的电烙铁焊接。使用IC也要注意其参数,如 工作电压,散热等。数字IC多用+5V的工作电压,模拟IC工作电压各异。 ※ 集成电路型号 : 集成电路有各种型号,其命名也有一定规律。一般是由前缀、数字编号、后缀组成。前缀表示集成电路的生产厂家及类别,后缀一般用来表示集成电路的封装形式、版本代号等。常用的集成电路如小功率音频放大器LM386就因为后缀不同而有许多种。LM386N是美国国家半导体公司的产品,LM代表线性电路,N代表塑料双列直插。具体封装这不多作解说,我们只要能认识就OK。 其它筒单集成电路:稳压IC、音乐IC、语音IC……

电路板上的TR、TH、J、L、CN、K、X都代表什么电子元件?

电阻

电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。电阻在电路中的主要作用为

分流、限流、分压、偏置等。

1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算

方法是:1兆欧=1000千欧=1000000欧

电阻的参数标注方法有3种,即直标法、色标法和数标法。

a、数标法主要用于贴片等小体积的电路,如:

472 表示 47×100Ω(即4.7K); 104则表示100K

b、色环标注法使用最多,现举例如下:

四色环电阻 五色环电阻(精密电阻)

2、电阻的色标位置和倍率关系如下表所示:

颜色 有效数字 倍率 允许偏差(%)

银色 / x0.01 ±10

金色 / x0.1 ±5

黑色 0 +0 /

棕色 1 x10 ±1

红色 2 x100 ±2

橙色 3 x1000 /

** 4 x10000 /

绿色 5 x100000 ±0.5

蓝色 6 x1000000 ±0.2

紫色 7 x10000000 ±0.1

灰色 8 x100000000 /

白色 9 x1000000000 /

电容

1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。电容是由两片金

属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。

电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交

流信号的频率和电容量有关。

容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)

电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容

等。2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3

种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法

(nF)、皮法(pF)。

其中:1法拉=103毫法=106微法=109纳法=1012皮法

容量大的电容其容量值在电容上直接标明,如10 uF/16V

容量小的电容其容量值在电容上用字母表示或数字表示

字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF

数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。

如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF3、电容容量误差表

符 号 F G J K L M

允许误差 ±1% ±2% ±5% ±10% ±15% ±20%

如:一瓷片电容为104J表示容量为0. 1 uF、误差为±5%。

晶体二极管

晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管。

1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;

而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常

把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。

电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如

1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。

2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多用

一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有

用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识

别,长脚为正,短脚为负。

3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极

管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好

相反。

4、常用的1N4000系列二极管耐压比较如下:

型号 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007

耐压(V) 50 100 200 400 600 800 1000

电流(A) 均为1

稳压二极管

稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。

1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变。

这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电

压变动时,负载两端的电压将基本保持不变。

2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,

前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。

常用稳压二极管的型号及稳压值如下表:

型 号 1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751

1N4761

稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V

电感

电感在电路中常用“L”加数字表示,如:L6表示编号为6的电感。

电感线圈是将绝缘的导线在绝缘的骨架上绕一定的圈数制成。

直流可通过线圈,直流电阻就是导线本身的电阻,压降很小;当交流信号通过线圈时,线圈

两端将会产生自感电动势,自感电动势的方向与外加电压的方向相反,阻碍交流的通过,所

以电感的特性是通直流阻交流,频率越高,线圈阻抗越大。电感在电路中可与电容组成振荡

电路。

电感一般有直标法和色标法,色标法与电阻类似。如:棕、黑、金、金表示1uH(误差5%)

的电感。

电感的基本单位为:亨(H) 换算单位有:1H=103mH=106uH。

变容二极管

变容二极管是根据普通二极管内部 “PN结” 的结电容能随外加反向电压的变化而变化这一

原理专门设计出来的一种特殊二极管。

变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高

频信号上,并发射出去。在工作状态,变容二极管调制电压一般加到负极上,使变容二极管

的内部结电容容量随调制电压的变化而变化。变容二极管发生故障,主要表现为漏电或性能变差:(1)发生漏电现象时,高频调制电路将不工作或调制性能变差。

(2)变容性能变差时,高频调制电路的工作不稳定,使调制后的高频信号发送到对方被对

方接收后产生失真。出现上述情况之一时,就应该更换同型号的变容二极管。

晶体三极管

晶体三极管在电路中常用“Q”加数字表示,如:Q17表示编号为17的三极管。

1、特点:晶体三极管(简称三极管)是内部含有2个PN结,并且具有放大能力的特殊器件。

它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补,所谓OTL电路

中的对管就是由PNP型和NPN型配对使用。

电话机中常用的PNP型三极管有:A92、9015等型号;NPN型三极管有:A42、9014、9018、

9013、9012等型号。

2、晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。为了便于比

较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。

名称 共发射极电路 共集电极电路(射极输出器) 共基极电路

输入阻抗 中(几百欧~几千欧) 大(几十千欧以上) 小(几欧~几十欧)

输出阻抗 中(几千欧~几十千欧) 小(几欧~几十欧) 大(几十千欧~几百千欧)

电压放大倍数 大 小(小于1并接近于1) 大

电流放大倍数 大(几十) 大(几十) 小(小于1并接近于1)

功率放大倍数 大(约30~40分贝) 小(约10分贝) 中(约15~20分贝)

频率特性 高频差 好 好

续表

应用 多级放大器中间级,低频放大 输入级、输出级或作阻抗匹配用 高频或宽频带电路及

恒流源电路

场效应晶体管放大器

1、场效应晶体管具有较高输入阻抗和低噪声等优点,因而也被广泛应用于各种电子设备

中。尤其用场效管做整个电子设备的输入级,可以获得一般晶体管很难达到的性能。

2、场效应管分成结型和绝缘栅型两大类,其控制原理都是一样的。如图1-1-1是两种型号的

表示符号:3、场效应管与晶体管的比较(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流

的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应

选用晶体管。(2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流

子,也利用少数载流子导电。被称之为双极型器件。(3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。

(4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把

很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用。

50个趣味电子小制作的作品目录

在电子领域中Tr:三极管(transistor),TH:热敏电阻(thermistor),J:跳线或跳接点(jumper),L:电感(inductor),CN:接插件,K:继电器,X:晶体振荡器,陶瓷谐振器(crystal, ceramic resonator)

在20世纪出现并得到飞速发展的电子元器件工业使整个世界和人们的工作、生活习惯发生了翻天覆地的变化。电子元器件的发展历史实际上就是电子工业的发展历史。

由于社会发展的需要,电子装置变的越来越复杂,这就要求了电子装置必须具有可靠性、速度快、消耗功率小以及质量轻、小型化、成本低等特点。

自20世纪50年代提出集成电路的设想后,由于材料技术、器件技术和电路设计等综合技术的进步,在20世纪60年代研制成功了第一代集成电路。

扩展资料

电子元器件是电子元件和电小型的机器、仪器的组成部分,其本身常由若干零件构成,可以在同类产品中通用;常指电器、无线电、仪表等工业的某些零件,如电容、晶体管、游丝、发条等子器件的总称。常见的有二极管等。

电子元器件在质量方面国际上有欧盟的CE认证,美国的UL认证,德国的VDE和TUV以及中国的CQC认证等国内外认证,来保证元器件的合格。

电子元器件发展史其实就是一部浓缩的电子发展史。电子技术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。

百度百科—电子元器件

百度百科—电子元件

第1章

电子制作基础知识

1.1常用工具

1.2常用电子元器件安装及焊接方法

1.3常用电子元器件的简介

第2章

实用电子小制作

实例1:电子节能灯制作

实例2:LED调光台灯

实例3:快速电池充电器

实例4:直流可调稳压电源

实例5:手机万能充电器

实例6:七人智力抢答器

实例7:LED流水灯

实例8:感应式电子迎宾器

实例9:水箱水位自动控制器

实例10:智能彩灯控制器

第3章

趣味电子小制作

实例11:无线和弦音乐门铃

实例12:无线多曲音乐门铃

实例13:光控自动节能LED灯电路

实例14:七彩控制灯

实例15:单音乐无线遥控门铃

实例16:AMFM两波段收音机

实例17:6管超外差收音机

实例18:自动干发器

实例19:迷你低音炮制作

实例20:分立元件功放制作

第4章

控制与遥控类小制作

实例21:1路遥控开关

实例22:集成电路声光控开关

实例23:红外线感应开关

实例24:光控路灯自动控制器

实例25:触摸延时开关

实例26:86外壳分立声光控开关

实例27:4路遥控开关

实例28:广告灯控制器

实例29:触摸开关灯

实例30:触摸调光灯

第5章

门铃与报警类小制作

实例31:门磁报警器制作

实例32:红外线对射报警器

实例33:调频无线话筒的制作

实例34:停电报警器制作

实例35:双音电子门铃

实例36:555电路报警器

实例37:叮咚门铃制作

实例38:闪烁灯光门铃电路

实例39:分立式声光控开关

实例40:市电电压双向越限报警保护器

第6章

仪器、仪表、单片机制作类

实例41:针对PT2262的解码器

实例42:三位数字显示电容测试表

实例43:MF47型指针万用表制作

实例44:遥控电风扇控制器

实例45:数显可调稳压电源

实例46:触摸式延时照明灯

实例47:单片机控制的音响

实例48:小型电子声光礼花器

实例49:红外线探测防盗报警器

实例50:面包型电话机

参考文献