1.浅析建筑工程空调通风系统节能控制?

2.楼宇自控系统中两类空气流量计的技术对比?

3.暖通中央空调施工图 设计说明的写作标准 跪求~~

4.暖通空调系统节能设计分析

5.楼宇自控系统怎么样设计

6.饭店建筑空调系统节能设计方法?

7.关于暖通空调设计的一些思考

8.BIN法的BIN方法

空调自控系统设计技术标准规范_空调自控系统设计技术标准

风机盘管空调系统的空调房间除用定流量水系统控制外,一般用温控器和节能钥匙进行自动控制。

(1)用温控器进行控制

风机盘管系统中用温控器控制电动水阀,手动控制风机的高、中、低运转速度。风机的启动或停转与电动水阀连锁。一般的温控器都设置有冬、夏季转换开关。利用温控器就可对空调房间的温度进行自动控制。

(2)节能钥匙控制

一般风机盘管的空调房间都设置有节能钥匙,插、拔钥匙即可启动或断开风机的电源,使风机停转。有些对使用要求较高的风机盘管系统还设置有温度开关,其温度设定值恒定不可调,使房间温度控制在一定的范围内。

浅析建筑工程空调通风系统节能控制?

一、系统集成

楼宇自控系统的关键组成部分之一是系统集成。在搭建系统时,需要将空调系统、照明系统、安防系统等多个子系统进行集成,以便实现信息交互和联动控制。选择适合的集成技术和协议至关重要,它们应能确保各个子系统的顺畅运行和互操作性。

二、传感器网络

为了获取楼宇内外环境的数据,楼宇自控系统需要大量的传感器。温度、湿度、光照强度等数据的准确性和实时性对于系统性能至关重要。因此,在搭建系统时,应合理设计传感器网络布局,并选择合适的传感器技术和通信协议,以确保数据的准确集和高效传输。

三、远程监控与控制

现代楼宇自控系统通常支持远程监控与控制功能,通过网络实现远程访问和管理。为了确保远程访问的安全性和可靠性,需要考虑网络架构、加密技术等因素,并取相应的安全措施。这样的设计使得用户能够随时随地监测和控制楼宇系统,提升了系统的便捷性和灵活性。

四、数据分析与智能决策

楼宇自控系统所收集的大数据具有重要价值,可以用于优化能源利用和提升建筑效能。在搭建系统时,应选择适合的数据存储和处理技术,并结合机器学习和人工智能算法,实现数据分析和智能决策的功能。这样的智能化设计将帮助用户更加高效地管理和维护楼宇系统。

五、用户界面与交互设计

楼宇自控系统的用户界面应简洁直观,具备良好的用户体验。在搭建系统时,应注重界面的设计和交互方式的合理安排,使用户能够轻松操作和监控系统。同时,界面的可定制性也很重要,以满足不同用户的需求。

六、系统可扩展性

楼宇自控系统应具备一定的可扩展性,能够方便地集成新的设备和功能。为此,在搭建系统时,应选择开放式的硬件和软件平台,以便后续的系统升级和功能扩展。这样的设计将保证系统的灵活性和可持续发展能力。

楼宇自控系统中两类空气流量计的技术对比?

建筑能源管理系列

前言:建筑能耗是指建筑在建设和运行使用过程中所利用的能源,其中使用过程中能源利用量占主导部分,包括建筑制冷、暖、照明、通风、炊事等方面的能耗。我们之前探讨了关于建筑围护结构、建筑照明系统及建筑供暖系统的节能改造。而在我国,真正的“耗能大户”的还是空调通风系统。空调与我国冬夏季能源紧张局势特别是当前电力紧张局势的形成有着密切关系,空调的迅速普及,使他作为建筑能耗大户的地位日益突显。到2020年中国内地空调高峰负荷节电空间约9000万kW,相当于5个三峡电站的满负荷容量,相应可减少电力建设投资4000亿元以上。因此,空调通风系统的节能已是当务之急,意义重大而深远。接下来笔者将一一介绍从需求侧相应对系统进行调节的空调通风系统节能措施。冷热源中央空调常见的冷热源配置方式有水冷冷水机组、热泵型机组和溴化锂吸收式机组。第一种冷热源在设计工况下的能效比较高,一般为3.7~5;第二种冷热源即热泵型机组,夏季制冷,冬季制热。在设计工况下,其能效比较水冷机组要低,仅达到3左右,但其具有良好的节能和环保效果;中央空调的另一种冷热源为溴化锂吸收式机组,这类机组的能效比(制冷量/消耗的热量)比较低,节电不节能,适用于有废热和余热的地方。建筑冷热源系统能量利用效率对比除了冷热水机组的选择,还可通过自动控制冷热源主机系统的启停量来实现空调通风系统的节能。如下图所示,是一种按冷冻水回水温度控制启停台数,利用主机信号和故障报警信号构成反馈的逻辑控制流程。用变频系统变频空调是指加装了变频器的常规空调。压缩机是空调的心脏,其转速直接影响到空调的使用效率,变频器就是用来控制和调整压缩机转速的控制系统,使之始终处于最佳的转速状态,从而提高能效比。变频技术在现代空调中的使用已成为必然趋势,它不仅能有效改良空调系统的工艺不足,还能大幅降低能耗,节省运行成本。设计者在选择设备时,通常留有一定的设计余量,实际上设备也极少在全负荷工况下运行,甚至从未全负荷运行过。建筑物由于使用情况的变化(如出租率不高,建筑功能变化等),负荷也会发生相应变化。建筑物的实际负荷会随着室外气候的变化而波动。通常空调设备只能按设计的额定功率运行,当负荷降低时,设备仍然按照额定功率全负荷输出运行,这就必然造成能量的浪费。如果我们能够使用变频技术使空调设备的输出功率随负荷的变化而变化,那么就可起到节能的效果。根据空调负荷来相应改变水流量或风流量可有效实现地节能。变风量空调系统(VAV)是通过末端装置来补偿室内负荷的变动,调节房间送风量以维持室温。变风量和定风量系统相比,一般情况下可节能50%。变水量系统(风机盘管)是通过水量控制的方法来调节温度的,其比定流量系统要节电。随着工业变频器的推广应用,通过对水流量、风量及主机等的变频控制调节,可实现其同所需空调负荷的实时匹配,从而产生显著的节能效益。如下图所示,VAV空调系统常用在送风机的输入电源线路上加装变频器,根据控制系统的指示改变风机的转速,满足空调系统的设计。新风控制根据舒适程度要求,一般把总新风量控制在全风量的10%左右,是可以节能的。有的空调系统回风量不到90%,回风量偏小,无度的增大新风热负荷,不是节能运行。利用自动控制技术实现新风控制,是实现空调通风系统节能的一个有效途径。空调系统确定后,可根据当地的气象变化情况,将焓湿图分成若干个气象区(空调工况区),对应于每个空调工况区取不同的运行调节方法。基本要求是调节机构尽量少,调节方法尽量简单,系统在各个工况分区内的运行最经济、合理,能最大限度地利用自然能源,以减少冷量、热量和电能的消耗,降低运行成本。(全年运行的五工况分区图、调节条件及调节内容)泵与风机的节能风机和水泵是空调系统中几乎不可缺少的设备,又是空调系统中耗电最多的设备之一。大中型中央空调系统中水泵的耗电量甚至占整个系统耗电量的30%左右。泵与风机存在的主要问题有:①为了压低初投资,所选用的泵与风机质量低,额定效率低于先进水平。②系统设计不合理,大马拉小车,有较大裕量。运行时泵与风机偏离性能曲线上的最佳工作区,运行效率比额定效率低很多。③输送管路的设计和安装不合理,管路阻力大,运行能耗加大。④管路水力不平衡,只能取阀门或闸板调节流量,增加了节流损失。⑤维护保养不当,泵与风机经常带病工作,浪费了能源。一般的节能措施有:①更新和改造,用高效率泵与风机替代原有的效率比较低的泵与风机。②选择水泵或风机特性与系统特性匹配。管网特性曲线尽量通过效率的最高点,对于流动特性变化比较大的管网系统,应尽量选择效率曲线平坦型的水泵。③在主要管路上安装检测计量仪表。④切削叶轮、减小直径。如果所选水泵的流量和扬程远大于实际需求,最简单的方法就是减少叶轮的直径,从而减小轴功率。但是这种方法只适用于扬程比较稳定的系统。⑤调节入口导叶,从而改变水泵或风机的流量压力曲线。入口导叶调节范围较宽、所花代价小、有较高的经济性,并可实现自动调节,因此被广泛用。总结总而言之,随着现代科学技术的发展,空调自控系统愈趋成熟,为使空调系统得到更加充分的利用,通风系统节能调节效果更加显著,我们应注重新技术的发展,不断实践、优化节能系统,在设计时达到高标准、高要求,在满足舒适度的基础上实现高能效。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

暖通中央空调施工图 设计说明的写作标准 跪求~~

下面是中达咨询给大家带来关于楼宇自控系统中两类空气流量计的技术对比,以供参考。

1引言

在设计嘉汇新城的楼宇自控系统时,发展商提出了一个要求:希望能对业主的房间提供单独的空调流量集,这样就可以进行独立的计费。因为当初笔者并没有好的思路,也考察了一些楼盘,但关于这部分的做法没有太多可参考之处,致使关于这方面的设计被淘汰。事后笔者专门对这部分的技术进行研究,在HVAC系统中,发现了正确选择空气流量集设备的重要性。因为技术安装位置、气流比率不同,会对整个系统的运行效果造成巨大的影响。

目前在HVAc系统中最通用的空气流量集与测量技术主要是:(1)全电子温度感应技术;(2)阵列式压力感应技术。为此,笔者认为全面了解这两个技术的内核对楼宇自控系统的设计者至关重要。

2空气流量计的演变历史

在气动控制主宰历史的时代,压力式流量计是必然的选择,压力感应管将单点的压力感应换算后直接传给控制主机。但是后来随着变速系统(VAV)的出现,需要大量空气流量测试设备来控制扇体的转速,厂商也意识到单点感应的局限性,进而向阵列式感应方向发展。因为此类设备是通过非线性压力信号的均值来计算样的,必然有一些误差存在,但是也满足了早期VAV系统的需求。

在80年代中期,随着直接数字控制技术(DDC)逐渐替代传统的气动控制,气流测量需要一些格外的转换器将原来的气动信号转换为DDC可识别的电子信号。在压力阵列技术中,由于不同的气压差很小,信号转换中的误差就十分重要,当然这是目前也无法保证的问题之一。

传统的HVAC系统均是为实现基本舒适和温度适宜而设计的,大多数系统额定的气流速率最大是2500Mpm,最小800Mpm。当然也要配置相应粗细的通风管道与气流测量装置。但随着技术的发展,对气流测量的准确度和稳定度均比以往要求的更高,所以新的气流测量技术也就加入到楼宇自控的行列中,最主要的就是用了温感技术。这样不通过信号转换,温感装置就可通过各个独立的传感器信号直接以线号发给中央控制系统,另外温感装置也可以准确的度量到气流从有到无的状态(理论上是如此,但是现实中很少应用),最后中央控制系统按照各个温感装置提供的平均温度计算出需要控制的参数来实现及时的调节与控制。

3两种技术之对比

除了温感与压差的测量原理不同外,对实际运行的影响也有很多微妙的因素。

3.1气流波动的影响

气流变化对如下因素影响最大:

(1)各个传感器准确度的影响;

(2)全样误差的影响;

(3)传感器调校的准确度;

(4)转换器/传输仪调校的准确度;

(5)传感探头的安装位置;

(6)设备长期的稳定性。

风机盘管的各个部分,包括拐弯、接头、扇体、压力机和填充物均会对气流产生特殊的涡流,这对流量设备的测量结果制造了不少的麻烦。当然,这些影响对温感和压感设备也各有不同,下面是一个参考后的数字对比(测量设备由Eron公司提供)。

3.1.1对各个传感器准确度的影响

(1)温感设备

在最初测量时,温感设备受盘管的影响最大,尤其是安装在接近混合风口的地方时,计量表经常显示严重错误。这主要是因为温感设备对热传导的感应误差造成的,测试的结果是传感器读到的数字远远高于实际的温度。经过检查发现,主要是温感传感器自己凉造成的。后来我们选择了可以自热的传感器,就减少了这一误差。

(2)压感设备

首先看一个公式:

V=(2DP/p)x0.5

V指速度,DP指压差DehaP,p指空气密度。

在大多HVAC系统中,压差相对于总气压是极月的数值,但是最后的信噪比在总气压下波动取样更重要,如图1所示:

例如,一个盘管内有2kPa的总气压,则一个百分比的气压波动将引起相应信噪比为O.05kPa的变化。而当速度在1000Mpm,相应压力达到2.5kPa时,噪音占了全部信号的1/3。结果就是管内的压感设备放大了误码,尤其是在气流低速时更是严重。我们得出结论,在盘管拐弯等风速较底的位置用压差感应设备是不明智的。经过反复测试结果也是一样的。所以要用压感设备测量,最好安装在直管的地方。

3.1.2全样误差

温感和压感均通过速度样来确定一定体积内的均速。而温感设备是直接测量其速度,压感是通过压力变化来确定当前速度的。这样就有一个问题,放置几个样点才可以集到准确的数据呢?温感和压感的样点又有何不同呢?根据国际标准IS03966建议的压感设备是一个立方的管内至少为25个。而温感则为4-20个点。理论上当然是点越多,测量数据越准确。

(1)温感设备

首先我们在0.1个m。的管道内放置了4个温感设备,经过测量发现温感设备的数量减少一半,相应的误码增加1%。经过对比我们建议一个对应的数据:

大小与密度对应表表l

管道大小(m。)

温感设备密度(个)≤0.120.1-0.44l8216

(2)压感设备

理论上来讲,在通过压感设备测试平均速度时首I要确定气流的比例。由于各个测试设备的算法差别I会导致测试结果的差别,因为压感设备取的是多l集的方式,所以也会得到不同的测试结果。通过以下简单的理论公式也可以证明。

(3)管槽测量

我们首先在一个90。的镀锌弯槽管中进行了测量,其内径约为60cmx60cm,弯管左接一个2.5m的直管,右接一个长度为5m的直管,5m直管前加接一个离心扇,而测量的位置距风扇3.4m。如图。2所示:

我们把风速分别调到lm/min、1.5m/rain、3m/rain、4.5m/min和5.5m/rain,测试结果如下:

我们在安装变速开关的情况下,两者测得的数据相差无几,但是我们在不安装开关的状态下测试,温感设备的变动幅度为10%,而压感变动幅度为50%,如图3、4所示。这就说明如果在回风管道中安装流量计,由于回风管道没有变速开关,所以建议选择温感设备效果更好。

经过反复测试,发现越接近拐弯的地方,温感的测试效果越好,其实压感设备的误码可以通过公式(1)来证明。

虽然流量计的安装位置可以通过选择使压感设备的测试效果变好,但本次实验仅是在一个管道中进行的,而实际的HVAC环境却要复杂的多,所以我们建议设计者要根据环境不同而选择不同的流量计量技术,安装简单未必就能满足实际的要求,何况安装的工人未必将设备完全按照设计的位置来架设。

(2)另外的一次测试是确定接近加湿机时哪种设备的效果更好。结果发现温感设备不受加湿机转速的影响,而压感设备无法集到准确的数据,如图5、6所示。

4结束语

设计者在选择流量计时必须仔细研究测试后的数据才能选择正确的设备。温感设备主要是用在管道气流变化较大的情况,尤其是有涡流的时候,而压感设备用在长且直的管道内可以获取更好的信噪比。

由于管道内速度的不断变化,也造成环境干扰的不断变化,而速度的变化需要通过多点的数据集才能获取准确的数值,永久安装在管道内的流量计要比我们实验所测的数据具备更少的随机误差。获取的数据也更可靠。温感设备由于是单点集相关位置的流量,相对于压感设备的阵列式多点集的均值而言,均值的误码要远远高于单点独立集的数据。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

暖通空调系统节能设计分析

(ps 表格弄上来有点乱哈- -||,慢慢看)

1.2 暖通空调工程施工图设计说明书

一、主要设计参数

1.室外设计气象参数

(1)空调室外计算干球温度

冬季twk=-----------℃

夏季twg =-----------℃

(2)夏季空调室外计算湿球温度tws=-----------℃。

(3)冬季空调室外计算相对湿度(最冷月月平均相对湿度)Φ=-----------%。

(4)大气压力

冬季 Pd=hpa;

夏季 Px=hpa。

2.室内设计参数见表1.2.l。

室内设计参数表 表1?2?1

夏季 冬季

新风量

(m3/h)

噪音声级db(A) 空气中含尘量

mg/m3

温度

℃ 相对湿度

% 平均风速

m/s 温度

℃ 相对湿度

% 平均风速

m/s

1

2

3

.

.

.

二、空调系统的划分、冷热指标与运行工况

1 .空调系统的划分(见空调系统划分表1.2.2)

空调系统划分表 表1.2.2

系统编号 服务房间 送风量m3/h 设计负荷Kw 空调方式 气流组织形式

夏季 冬季

K-1

K-2

K-3

2.冷、热指标

本项目空调建筑总面积为.______m2,二季设计冷负荷为_____kw,冬季设计热负荷为.kw,建筑平面冷指标为______W/m2,建筑平面热指标为______W/m2。

3.空调系统的设计运行工况,见表1.2.3。

空调系统的设计运行工表 表1.2.3。

系统编号 参数名称 单位 不同工况时的运行参数

外 干球温度 ℃

湿球温度 ℃

内 干球温度 ℃

湿球温度 %

新风量 m3/h

一次

回风 混合点温度 ℃

混合点焓值 J/Kg

回风量 m3/h

一次

回风 混合点温度 ℃

混合点焓值 J/Kg

回风量 m3/h

冷却处理后的状态 温度 ℃

相对湿度 %

供水情况(冷水、热水、循环水)

加热处理后的状态 一次加热后温度 ℃

二次加热后温度 ℃

加湿量 Kg/h

送风状态 温度 ℃

相对湿度 %

三、风管、方阀与防火阀

1.风管

(1)设计图中所注风管的标高,对于圆形时,以中心线为准;对于方形或矩形时,以风管底为准。

(2)风管材料用_________制作,厚度及加工方法,按《通风与空调工程施工及验收规范》(GB50243—)的规定确定。

(3)当设计图中未标出测量孔位置时,安装单位应根据调试要求在适当的部位配置测量孔。测量孔的做法见国标T615。

(4)穿越沉降缝或变形缝处的风管两侧,以及与通风机进、出口相连处,应设置长度为200~300mm的人造革软接;软接的接口应牢固、严密。在软接处禁止变径。

(5)风管上的可拆卸接口,不得设置在墙体或楼板内。

(6)所有水平或垂直的风管,必须设置必要的支、吊或托架,其构造形式由安装单位在保证牢固、可靠的原则下根据现场情况选定,详见国标T616。

(7)风管支、吊或托架应设置于保温层的外部,并在支吊托架与风管间镶以垫木,同时,应避免在法兰、测量孔、调节阀等零部件处设置支吊托架。

(8)敷设在非空调空间里的送、回风管,均以______进行保温,厚度为_____mm。保温层外部覆以______________保护层,做法见国标 T613和 87R412。

2.风阀

安装调节阀、蝶阀等调节配件时,必须注意将操作手柄配置在便于操作的部位。

3.防火阀

(1)安装防火阀和排烟阀时,应先对其外观质量和动作的灵活性与可靠性进行检验,确认合格后再行安装。

(2)防火阀的安装位置必须与设计相符,气流方向务必与阀体上标志的箭头相一致,严禁反向。

(3)防火阀必须单独配置支吊架。

四、冷热水系统

1.制冷机

(1)冷源选用______型_______机组共______台。冷源服务的建筑面积为_________m2,

装机容量指标为________W/m3。

3.制冷机的设计运行工况及各项参数见表1.2.4。

制冷机设计运行参数表 表1.2.4

冷机号

冷凝温度℃

蒸发温度℃ 制冷水 冷却水

初温℃ 终温℃ 水量(m3/h) 初温℃ 终温℃ 水量(m3/h)

R—1

R—2

R—3

(3)制冷机组的清洗、安装、试漏、加油、抽真空、充加制冷剂、调试等事宜,应严

格按照制造厂提供的《使用说明书》进行;同时,还应遵守《制冷设备、空气分离设备

安装工程施工及验收规范》(JBJ30——96)和《压缩机、风机、泵安装工程施工及验收规范》(JBJ29—96)以及其它有关规范、标准中的各项规定。

2.冷水系统

(1)冷水系统用____________ 式机械循环。

(2)图中所注管道标高,均以管底为准。

(3)管材:用碳素钢管,具体规格见表1.2.5。

钢管钢管规格表 表1.2.5

公称直径 外径壁厚(mm) 应用标准

mm in

10

15

20

25

32

40

50

65

80

100

125

150

200

250

300

350

400

450

500 3/8

1/2

3/4

1

11/4

11/2

2

21/2

3

4

5

6

8

10

12

14

16

18

20 17.0×2.25

21.3×2.75

26.8×2.75

33.5×3.25

42.3×3.25

48.0×3.50

57.0×3.50

73.0×3.50

89.0×4.00

108.0×4.00

133.0×4.00

159.0×4.50

219.0×6.00

273.0×6.50

325.0×7.50

377.0×9.00

426.0×9.00

480.0×9.00

530.0×9.00 GB3092—82

GB8163—87

SYB10004--63

(4)水管路系统中的最低点处,应配置DN=25mm泄水管,并配置相同直径的闸间或蝶阀。在最高点处,应配置DN=15mm_________式自动排气阀。

(5)管道支吊架的最大跨距,不应超过表1.2.6给出的数值。

管道支吊架表 表1.2,6

公称直径(mm) 最大跨距(mm) 公称直径(mm) 最大跨距(m)

15—25

32—50

65—80

100

125

150

200 2.0

3.0

4.0

4.5

5.0

6.0

7.0 250

300

350

400

450

500

600 8.0

8.5

9.0

9.5

10.0

11.0

12.0

(6)管道活动支、吊、托架的具体形式和设置位置,由安装单位根据现场情况确定,做 法参见国标 88R420。

(7)管道的支、吊、托架,必须设置于保温层的外部,在穿过支、吊、托架处,应镶

以垫木。

(8)冷水供、回水管、集管、阀门等,均需以保温材料(导热系数A≤0.06W/m?℃)进行保温。保温层的厚度:当DN≤50mm时,δ=_______mm:DN≤50mm时,δ=________mm。保温层外部,覆以________保护层,做法见国标 87R412。

注:当用带铝箔复合层的管壳时,可以不再做保护层。

(9)冷水管道穿越墙身和楼板时,保温层不能间断;在墙体或楼板的两侧,应设置夹

板,中间的空间,应以松散保温材料(岩棉、矿棉或玻璃棉)填充。

(10)与水泵连接的进、出水管上,必须设置减振接头,接头选型,详见设计图纸。

(11)每台水泵的进水管上,应安装闸阀或蝶阀、压力表和Y型过滤器;出水管上应安装止回阀、闸阀或蝶阀、压力表和带护套的角型水银温度计。

(12)安装水泵基座下的减振器时,必须认真找平与校正,务必保证基座四角的静态下沉度基本一致。

(13)管道安装完工后,应进行水压试验。试验压力按系统顶点工作压力加 0.IMPa用,但不得小于 0.3MPa,在5min内压降≯20kPa为合格。

注:水系统水压试验时,若系统低点的压力大于所能承受的压力时,应分层进行水压试验。

(14)经试压合格后,应对系统进行反复冲洗,直至排出水中不夹带泥砂、铁屑等杂质,且水色不浑浊时方为合格。在进行冲洗之前,应先在所有设备的进水口加装过滤器或临时滤网,待冲洗工作结束后再拆下为冲洗管道而临时安装的滤网,并清洗过滤器的滤网。管路系3.热水系统

(1)热媒用_________℃热水,回水温度为________℃。由设置于_______内的______式换热器集中提供,经循环水泵输送至各空调换热设备。

(2)水路系统设计为_____管制,冷水和热水_____使用_______管路。

(3)换热器选用_______型________式,传热面积为_______m2。

(4)换热器及与其相连的供热管道,均以岩(矿)棉进行保温,厚度为____mm,保温层外部做______________保护层,做法详见国标87R411。

五、油漆

1.保温风管、冷水管道、设备等,在表面除锈后,刷防锈底漆两遍。

2.不保温的风管、金属支吊架、排水管等,在表面除锈后,刷防锈底漆和色漆各两遍。

注:(1)用镀锌钢板时可以不刷漆。

(2)对于风管,必须内外均刷防锈底漆。

(3)为了省去除锈工序,推荐用SRC-A型特种带锈防锈除锈底漆。

六、调试和试运行

(一)试压、冲洗与清扫空调制冷系统安装竣工并经试压、冲洗合格以后,应进行必要的清扫。

(二)调试

上述工作全部完成后,即可投入试运行,进行测定与调整,主要内容有:

1.单机试运转水泵、通风机、空调机组、制冷机等设备,应逐台启动投人运转,考

核检查其基础、转向、传动、润滑、平衡、温升等的牢固性、正确性、灵活性、可靠性、合理性等。

2.系统的测定与调整

(1)测定通风机的风量、风压;

(2)按“动压(或流量)等比法”调整系统的风量分配,确保与设计值相一致;

(3)风量调整好以后,应将所有风阀固定,并在调节手柄上以油漆刷上标记。

3.冷(热)态调试

(1)考核并测定加热器、冷却器、喷水室、加湿器、热交换器、制冷机等设备的能力。

(2)按不同的设计工况进行试运行,调整至符合设计参数。

(3)测定与调整室内的温度和湿度,使之符合设计规定数值。

4.自控系统的调整

将各个自控环节逐个投人运行,按设计要求调整设定值,逐一检查,考核其动作的准确性与可靠性。必须调整至各项控制指标符合设计要求。

5?综合调试

根据实际气象条件,让系统连续地运行不少于24h,并对系统进行全面检查、调整、考核各项指标、以全部达到设计要求为合格。

以上调试过程,应做好书面记录。

1.3 暖通空调工程施工说明书

一、分清施工责任并按图施工

为确保施工质量,施工队自进人施工现场起到施工结束止,应明确建立施工小组或施工人员的安装责任区或责任段,以便奖优罚劣,并在出现问题时便于查找和分清责任。施工安装必须严格按图施工,施工人员不得自行改动。如因故需要变动,必须通设计人核查与验算,并出具“设计变更通知书”。

=、管道连接方式

除小管径管道(DN32以下)可用丝扣连接外,一般管道均为焊接方式。但在施工中应

考虑分区或分段打水压试验时加盲板之需要,由施工队确定在适当部位增设法兰盘。

三、管道除锈、涂漆与清洗

.1?除锈涂漆 除镀锌管外,各种管道均应进行除锈处理并涂以防锈漆。

.2.清洗管道安装时,必须先行清除管内脏物。水系统安装后,须对全系统冲水清洗

(或用压缩空气吹清),直至管内排出的水呈无色的、不含杂质的水为止。然后清洗冷水机组、空调机组、新风机组和每个风机盘管的水过滤器滤网以及水泵吸水口处水过滤器的滤网。各设备进水口如未装过滤器,则清洗管道前应加装临时滤网,待冲洗完毕后再拆下临时滤网。

四、无渗间试验

1.打水压试验 凡供回水管和补水管(含地下敷设管道)均须进行0.8~1.0MPa水压试验20min无渗漏为合格(或smin内压降≯20kPa为合格)。

2、注水试验接水盘凝水管、膨胀水箱及其溢、泄水管均须进行充自来水而无渗漏为合格。

3。验收签字无渗漏试验须由甲方验收并签字。

4、防凝水滴落 每个风机盘管的供水小阀门和过滤器均须安装在接水盘上方,以防凝水滴落于接水盘之外的吊顶上,其他管道则敷设保温层,以杜绝凝水滴落。

五、保温施工

在无渗试验合格后方可敷设保温层。保温施工要保证各部位的严密封闭,不得有漏缝

或漏点,严防凝结水滴落而出现施工质量事故。

六、安全施工

暖通空调工程施工必须遵照国家、省(市、区)安全施工的各种规范和甲方以及施工队的安全规定,严防出现各种事故,杜绝重大事故。

楼宇自控系统怎么样设计

暖通空调系统节能设计分析

 在暖通空调设计中应注意改善围护结构的热工性能和热设备的保温性能;空调系统方案要节约能源,充分回收能量,并尽可能利用天然能源,同时取自控节能等有效途径,在设计上合理选择暖、通风与空调相结合的节能系统,以有效降低建筑物的冷热损失。那么,下面是我为大家提供暖通空调系统节能设计分析,欢迎大家阅读浏览。

 1.概述

 随着我国城市化的飞速发展和人们生活水平的提高,建筑能耗在总能耗中所占的比例越来越大,在发达国家已达到 40%,我国长期以来,由于过分强调建筑造价、个体利益,加之没有建筑节能方面的标准规范可供依据,导致重复建设、质量结症问题的存在,致使能源浪费情况严重。建筑能耗主要包括建筑物在暖、通风、空调、照明、电器和热水供应等需求方面的能耗,为了维持建筑物内部空气环境适宜的温湿度,现代建筑中通常用设置暖通空调系统来保证这一需求,而所消耗的能量即为暖通空调系统的能耗。这部分能耗中包括建筑物冷热负荷引起的能耗、新风负荷引起的能耗及输送管道散热引起的能耗。影响暖通空调系统能耗的主要因素有室外气候条件、室内设计标准、围护结构特征、室内人员及设备照明的状况以及新风系统的设置等。就我国暖通空调系统节能的有效对策谈几点看法。

 2.暖通空调系统节能的设计思路

 2.1 方案设计

 现在非常流行的空调设计方案是: 在低能耗,高室内环境品质的前提下,风量可调的置换式送风系统、冷辐射吊顶系统、结合冰蓄冷的低温送风系统以及去湿空调系统。为了平衡高层办公楼中设备、照明等主要热源形成的辐射热量用辐射形式供冷。冷辐射吊顶应结合置换式送风,将新风用下送风方式送入室内,既保证室内空气品质,又保证良好的室内热环境。而用空调去湿方案,首先可以保证室内空气品质: 其次保证了绿色建筑中室内湿度可控制在 60%以下的要求。

 2.2 具备良好的通风系统

 绿色建筑应该具备良好的通风系统,实现合理的自然通风,但某些建筑由于装修材料含有挥发性有害物质造成室内空气污染,所以新风在室内的流动对健康是必不可少的。

 2.3 蒸发冷却技术

 蒸发冷却空调技术是一种绿色仿生空调技术,包括间接蒸发冷却( IEC) 和直接蒸发冷却( DEC) 。该系统用水作为制冷剂,实现空调运行对环境无污染: 另外,蒸发冷却系统的. COP值比机械制冷大得多,且它的制冷不消耗压缩功,是一种节能环保型绿色空调技术。

 2.4 地源热泵空调系统

 地源热泵空调系统是利用土壤、地下水或江河湖水作为冷热源的一种高效空调方式。土壤是一种很适宜的热源,其温度适宜、稳定,蓄热性能好且到处都有。地源热泵全年运行工况稳定,不需要其他热源及冷却设备即可实现冬季供热夏季供冷。地源热泵的 COP 值可达 4. 0 以上。对于用深井回灌方式的水源热泵,由于地下水抽出后经过换热器回灌至地下,属全封闭方式。因此不使用任何水,也不会污染地下水源。

 3.暖通空调领域节能的途径与方法

 3.1 改善建筑围护结构的保温性能,减少冷热损失

 对于暖通空调系统而言,围护结构的保温性能决定其传热系数的大小,亦即决定围护结构冷、热负荷的大小。所以在国家出台的建筑节能设计规范和标准中,首先要求的就是提高围护结构的保温隔热性能。适当增加墙体、屋顶的保温性能,可以减少通过这些围护结构产生的冷、热负荷。例如:用新型节能墙体)))小型混凝土空心砌块做墙体可有效减轻建筑物的负荷,其墙体传热系数K=0.54 W/m2,比传统黏土实心砖墙节能一倍以上。根据权威部门对住宅围护结构的热工测试结果证明,住宅内热量损失有40%~50%是由于门窗的冷风渗透和外门的冷风侵入,所以应尽量用密封性好、保温节能的新型塑钢门窗。

 3.2 空调新风量影响空调系统能耗

 空调新风问题是影响空调是否节能的一个重要方面,新风量过多会增加其负荷,进而增加电耗,处理的新风量过少则会影响空调环境的质量,因此针对具体的空调环境做好送风温度和新风比例的调整非常有利于节能。比如,对于夏季需供冷、冬季需供热的空调房间,室外新风量愈大,系统能耗愈大,在这种情况下,室外新风应控制到卫生要求的最小值。而在过渡季节,空调室内一般不需供冷或供热,可全部用新风,这种方法是空调系统最有效的节能措施之一。

 3.3 空调方式影响空调系统能耗

 选择合适的空调方式是空调节能的一个重要方面。近几年来,变频空调因其具有节能和提供舒适内环境的显著特点而得到飞速发展,到目前为止,日本变频空调器占其住房空调器市场销售份额的80%以上。根据日本JRA404标准,变频空调器季节能效比远高于定频空调器,在冷负荷相当的情况下使用变频空调器消耗的功率仅为定频空调器的66%,即省电34%。因此,变频空调应是空调发展的一个趋势,使空调尽可能达到节能要求。在中央空调系统中,我们应用变频技术,其主要有两种形式:用变速泵和变速风机替代调节阀,减少系统内部消耗,提高整机效率,或者用变流量技术,根据空调负荷改变水流量或风流量,从而达到节能效果。

 3.4用新型节能方式

 影响人体热舒适性的环境参数众多,不同的环境参数组合可以得到相同的热舒适性效果,但不同的热湿环境参数组合,空调系统的能耗是不相同的。例如在冬季,如果我们用传统的空调方式,把整个室内的空气加热,通过空气实现人体与环境的热湿交换,就需要较高的空气温度,此时通过维护结构的热损失和加热新风的热损失都比较大。如果我们根据热湿环境的研究成果,改变传统的空调方式,增加辐射热,此时所需要的空气温度显著下降,一般可达到14℃,而传统空调方式一般在 20℃,显然后者比前者具有显著的节能效果。

 3.5 冷热回收利用的研究运用,实现能源最大限度的利用

 目前许多空调系统冷热回收利用研究也在蓬勃发展,如空调系统排风的全热回收器,夏季利用冷凝热的卫生热水供应等,都是对系统冷热的回收利用,显著提高了空调系统能源利用率。从节能考虑,将系统中需排掉的余热移向需要热的地方是节能的一种趋势。全热交换器的热传递效率现可达到75%~80%。还有一些常用热回收装置,如热管换热器、板式换热器、热回收环路等。相对来说,热泵系统回收方式更普遍,热泵可以回收100e~120e以下的废热,可利用自然环境(如空气和水)和低温热源(如地下热水、低温太阳热和余热)来节约大量供热燃料,是一种新型的高效利用低温能源的节能技术。如果热泵与直接接触式热回收设备联合使用,其热回收效率比单一设备要高得多。

;

饭店建筑空调系统节能设计方法?

如何设计楼宇自控系统

楼宇自控系统简称BA,是智能建筑中不可缺少的重要组成部分之一,它的特征是“集中管理分散控制”,主要是对整个楼宇建筑的所有公用机电设备,包括中央空调系统、给排水系统、供配电系统、照明系统、电梯系统等,进行优化及自动化控制管理,从而降低设备故障率,减少维护及营运成本。楼宇自控最终目标是为了给建筑使用者提供一个更高效、安全、快捷、舒适、经济的生活环境。

那么当我们接到一个新项目时,都需要做哪些工作呢?

首先,进行BA系统设计

一、 BA设计前期

1、了解建设方的需求

仔细阅读建设方的建设要求,包括:建设 BA 系统包括的控制范围、控制内容、控制要求、需要 BA 的系统结构,工作站要求,软件协议要求等。

2.界面的划分

二、图纸的收集

1、系统图、平面图、原理图

一般性需要:通风系统的风系统图、平面图;空调系统中的水系统图、平面图、设计说明、设备表或大样图等;冷源、热源系统图、平面图;给排水系统图、平面图;电力系统图、平面图;照明系统图、平面图(如有照明控制);变电所系统图(如有电力系统参数监视)。

另需根据控制范围,比如建筑方要求把泳池水处理纳入 BA 的,就需要收集相应的系统图纸。

注:应了解工艺,才能知道如何控制调整相应设备 -- 很重要。

2、阅读图纸

了解具体设备情况,如空调、新风机组段数组成,冷热源系统工艺设计等,根据甲方所要求的控制范围、控制内容、方式建立 BA 系统监控点表,同时可初步配置 BA 系统设备(一次设备可以准确配置了,注意阀门口径的配置应阅读空调系统工艺图纸)。

三、BA系统设计

1、根据点表画出控制原理图。

2、将所有要求控制的设备落在 BA 设计图纸上,并根据设备平面位置分布,选用 DDC 点数容量等,准确合理配置 DDC ,这时应考虑系统总线的路由、 DDC 电源等。

3、画出 BA 系统图,描述总线关系。

4、画出平面图纸,描述系统控制的管、线、线槽、控制内容等。

5、统计设备表,报价。

6、控制点表出具以后,实际方案也就出来了,现在是应该将方案落在纸上的时候了。

7、工程实施过程中,还应该出具向其他专业提出的详细要求。

8、工程实施过程中,如需要还应做出 BA 系统一次设备接线图、 DDC 设备接线图等。

四、图纸会审

五、图纸输出

其次,BA系统厂家与工程商配合

一、商务输入资料

1、招标文件

2、图纸(BA系统图、原理图、施工平面图)

3、不带价格的合同(材料表清单、实施界面的划分、工期要求、验收标准)

4、其它特殊要求

六、BA系统厂家输出资料

厂家自有产品的系统图、平面图、原理图、箱体接线图。

最后,进行收尾工作。

1、指导安装

2、单点测试

3、图型界面制做

4、系统联调

5、系统培训

6、配合商务做系统验收

关于暖通空调设计的一些思考

饭店建筑空调系统节能设计方法具体内容是什么,下面中达咨询为大家解答。

我国在公共建筑节能方面的研究还处于起步阶段,近年来,清华大学的薛志峰、江亿等,同济大学的王长庆、龙惟定等以及西安建筑科技大学的刘加平、杨柳等在北京、上海、西安等城镇进行了大量公共建筑能耗调查工作,据有关数据表明,公共建筑普遍存在30%以上的节能潜力。随着饭店类建筑档次不断提高,其能源的消耗量也越来越大。据统计,部分饭店类建筑的能耗费用已经占到年收入的10% ~15%,能耗费用成为是否盈利的重要因素之一。而空调系统的能耗占饭店类建筑总能耗的50%左右,因此如何进行空调系统的节能设计已成为一个重要的现实问题。本文结合饭店类建筑空调系统的现状,从空调系统的设计着手来探讨节能措施。1 饭店空调负荷计算1.1 空调系统冷负荷的估算进行冷负荷计算需要考虑较多因素,且计算过程较为复杂,所以空调设计人员常以经验指标或简化计算得出的估算指标进行冷负荷的估算,也有些根据已建成运行的典型工程作为参考进行估算。然而目前饭店类建筑普遍存在的问题是冷负荷估算值过大,致使装机制冷量也过大。据调查,饭店类建筑中79. 2%的实际开机容量负荷指标是58W /m2~81.4W /m2(包括小于58W /m2),另外的20.8%的实际容量负荷指标是81. 5W /m2~104. 7W /m2,也就是说实际开机的容量负荷指标均在105 W /m2以下,在饭店类建筑空调系统的设计中应该注意到这一点。另外,根据对北京地区和长沙地区饭店空调负荷变化的调查数据,饭店类建筑空调系统全年98%以上的时间是在设计负荷的80%以下运行,而80%以上的时间在设计负荷的50%~55%以下运行。掌握这些空调负荷的分布特点也对空调系统的设计以及设备选型等具有重要的意义。1.2 新风负荷饭店空调系统的新风负荷在总负荷中所占的比例较大,因此新风量如何取值是空调设计中的重要问题。但是,关于饭店建筑空调系统新风量的选取规定并不统一,在设计中要同时兼顾卫生要求和节能要求。2 饭店空调系统节能设计2.1 冷、热源系统节能当饭店空调系统的冷热负荷确定以后,就应该考虑空调系统的冷、热源形式以及设备选用的问题。就目前来看,大型公共建筑冷热源的主要问题有系统方式不合理、冷机选型过大和运行维护不当三个问题。空调冷源的形式多种多样,选择时应该充分考虑建筑物的空调面积、用途、冷热负荷的大小、当地气象条件、所在地区能源结构、价格以及环保规定等因素。根据《暖通风与空气调节设计规范》和饭店类建筑空调的特点,可以按照以下原则选择:1)冷源适宜在电动压缩式和吸收式制冷机组之间进行选择;2)在有城市区域供热或者工厂余热的地区,可以用蒸汽溴化锂吸收式冷水机组,这样有利于提高热网的利用率、平衡热网负荷;3)在有城市天然气,执行分季气价、价差较大的地区,可以用燃气型吸收式冷水机组; 4)有稳定的天然水源可供利用的地区可以用水源热泵机组; 5)西北等气候干燥的地区应该优先考虑用蒸发冷却技术; 6)干旱缺水地区的中、小型建筑可以用风冷式冷水机组; 7)在执行分时电价、峰谷电差价较大的地区,可以用低谷电蓄冷,这样能够产生比较好的经济效益; 8)在大多数情况下,可以用电动压缩式冷水机组。2.2 空调风系统节能空调风系统节能的一个重要的措施就是排风冷、热回收,其实质就是对新风进行预冷和预热处理。在《暖通风与空气调节设计规范》中规定,空调系统宜设置热回收装置。如果在空调系统中设置全热交换器,可节约60%~80%新风能耗,也相当于减少了10%~20%的空调负荷。进行排风热回收的必要条件是把新风和排风集合到一起,这就要求在设计时对系统划分、风道布置以及送回风机和热回收装置等设备的布置进行综合考虑。全热回收装置是靠新风与排风之间的温差和蒸汽的分压力差来达到热湿交换的,为了使换热设备能够高效运行,进入热回收装置的新风和排风应该首先经过空气过滤器,而且装置运行的环境温度应该保持在-5℃以上,否则可能结霜而不能正常工作。在北方寒冷地区,冬季不能直接运行热回收装置,应该先对冷空气进行预热到-5℃以上,并且应设置温度自控装置。应在新风与排风的管道与热回收装置相连接处设置旁通风道,以保证装置在非正常运行状态下空调系统也能正常运行,也保证了系统的安全可靠。2.3 空调水系统节能目前许多饭店的空调水系统突破了传统的设计模式,对一级泵系统进行变流量运行,运行效果良好。冷冻水大温差技术是饭店空调水系统节能的另一项有效途径。通常标准冷冻水的供回水温度是7/12℃,而大温差冷冻水供回水温度可以设置为7/17℃。在满足用户舒适性要求的条件下,冷冻水大温差技术能够减少冷冻水的流量,从而降低输送能耗和空调主机、冷冻水泵以及末端设备的运行能耗。饭店类建筑空调水系统的冷凝热的回收利用是节能的又一项有效措施。饭店类建筑中一般都需要提供24 h热水,所以应用冷凝热回收技术会收到良好的社会效益和经济效益。目前冷凝热回收主要有三种形式:1)由冷水机组生产厂提供的带有热回收器的冷水机组;2)对于现有的冷水机组,可以由专门从事热回收的公司提供配套的服务,加装热回收器以及相应的配套设备;3)在现有的空调水系统中加装高温水源热泵机组,把冷水机组的冷却水作为热源,由高温水源热泵机组提供65℃以上的热水。3 饭店空调自动控制系统空调系统能耗在建筑总能耗中所占比例很大,因此为了降低空调系统的能耗,空调系统成了智能建筑自控系统中的重要组成部分。据统计,在BA系统中用了最优启停控制、最优运行设备台数控制、焓值控制、温度自适应控制以及供水系统压力控制等节能措施后,可以减少约20%的能耗,因此在空调系统中设置自控系统具有十分重要的意义。一般来说,在饭店空调系统中需要监测和控制的参数主要有:空气温湿度、风量、水量、压力或压差等,监测和控制的元件主要包括:温度传感器、湿度传感器、风量及水量传感器、压力或压差传感器、执行器(包括电动、气动执行器和电动阀等)以及各种控制器等。在实际工程中,应在进行具体分析后选择用上述全部或部分参数的监测和控制。针对空调系统冷水机组及其相应的配套设备(如水泵、冷却塔等),自控系统的任务还有设备的运行台数控制,即对不同冷、热量需求用不同的机组联合运行以达到设备的高效运行以及节能的目的。空调自控系统的另一个主要内容就是设备联动、故障报警和集中管理。设备联动的主要目的除了减轻工人的劳动强度以外还有就是保证设备的安全运行。另外,空调系统中有许多设备的控制都涉及到消防,这些设备与消防系统的联动也就需要通过自控系统进行控制。4 结语空调系统设计首先要解决的就是负荷问题,需要注意的问题是冷负荷估算的准确性和新风负荷的取值。本文讨论的节能问题基本上都是在空调系统运行状态(或能耗指标)的基础上,提高能源利用率也是节能的重要措施,可以减少投资。空调系统节能设计重要步骤还有系统设计,包括风系统和水系统的设计。对于风系统来说,排风热回收是一项有效的节能措施,而对于水系统来说,变流量系统节能效果明显,同样可以达到节能效果的措施还包括冷冻水大温差技术和冷凝热回收技术。作为空调系统设计工作者,在饭店类建筑空调系统的设计过程中应该尽量应用这些先进技术以尽可能的达到节能的效果。最后,用自控系统也是空调系统节能的重要手段,研究表明,用设计合理的自控系统可以节省20%以上的能耗,这也是目前自控系统能够得到广泛应用的主要原因之一。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

BIN法的BIN方法

1. 一个软件的安装一定要打开试用一下,没问题才是安装成功。

2. 标准、条文上的黑体粗字是必须执行的。

3. 冷冻水:供实、虚回

4. 画出来的图要能用

5. 坡度:供、回靠水泵送上去

6. 自动放气阀:位于给水管最高点,一般放在厨房、卫生间,因为是铝板容易拆。安装高度注意看图上标高

7.注意检查口

8. 厨房、卫生间吊的顶比石膏板低

9. 回水管:高 ? 供水管:低

10. 预留套管位置是暖通与结构碰后的结果

11. 对水管的位置没有明确的规范要求,但要跟土木碰一碰,确保结构的没问题

12. 冷凝水管从梁下走,从地漏排走

13. 穿梁的预埋套管一般不可以离的太近,一般为200的间距,太近的话中间穿不了钢筋,结构的稳固性不好

14. 空调不能对着头吹

15. 管路少穿墙

16. 吊顶美观也很重要

17. 冷凝水坡度一般都是0.003(千分之三),也可以是0.005

18. 画的图一定要清晰地表达意思意图

19. 图纸说明:空调设计包括:依据、概况、参数(室内、室外、维护结构)、冷热负荷、空调设计系统(空调、自控)、环保

(1)施工说明

(2)图例

(3)所用标准图集

(4)主要设备材料表

(5)图纸目录

20. 可以通过看水系统图来研究系统结构

21. 要保持足够的劲头、手速(画图就要快速画好,不要慢吞吞)

22. 看管间距方法:[管径/2+保温层厚度(查规范)]*2

23. 画图时可以看看3维版,有更直观印象(画图时脑内要装换成真正的实物,这样根据实际去考虑规范规定的事)

24. 管路能穿剪力墙就不要穿梁

25. 风量按换气次数计算,若为双层地下车库则要按每辆车的量算

26. 热力入口在地下室

27. 大样图上阀门、保温层厚度在图集上有

28. 平面图上的阀门可以自由缩放、斜着放,表达出这个就行了(不能太小了,太小图上看不见)

29. 常用风盘制冷量:

FP-8:4.5KW

FP-6.3:3.5KW

FP-5:2.8KW

FP-3.5:2.0KW

制冷量计算时,把这层或这个系统的每个风盘制冷量代数相加,再乘以同时使用系数0.65,即可以的得到这层活这个系统的制冷量。

经验上一般小区不会同时开所有的空调,所以不用按空调制冷量算,一般取140W/m2已经很大了。按小区来取得话算50W/m2.

30. 标了标注的就是必须实际照做的

没有标注的是平面图,是概念图(按照那个摆,但具体位置不是)

31. 只接一条线的时候,比摩阻要控制在250以内,控制比摩阻是为了减小沿程损失。

正常比摩阻在100-300范围内,这是一个可能出现的范围,所有比摩阻值必须控制在250以下

32. 水系统布置:

(1) 布置原则(阀门种类,什么时候安)

(2) 水系统的承压能力

规范上有一般系统的承压能力,从而考虑是否需要竖向分区

(3) 水力计算

算水管水流量

算水管管径

水系统的沿程损失计算

水系统的管段局部损失

33. 系统工作压力=静压+动压

承压能力讲的是设备承压

34. 鸿业软件上的“分支计算”必须是断线,且有头有尾可以计算,所以一般重新画一个专门用于计算的立管系统

35. 梁图上穿梁的部分才要加套管

36. 画完图的最后要检查一下有没有问题

37. 穿梁图上考虑入户地暖管走地下室

38. 画图要心中有成算,手上看起来慢其实快。动手改起来要完全改完再该别的

39. 别人讲的都是暂时这样或者经验这样,要以规范和图集为准

40. 有时候不是对于错,只是个人的习惯问题

41. 标注只要表达清楚了就可以,没有规定一定在哪个方向。

42. 标注时考虑大小、位置、高度

43. 冷凝水的高度和位置一般不表示,因为太细,一般画出图即可,位置施工时会自己协商

44. 套管的具体位置按预埋套管图上的位置。

45. 即使有大样,平面图上阀门也要画全,实在画不下,注上详见大样

46. 一层会有指北针,是建筑图上给的

47. 水管水力计算:

(1) 根据选型风盘的功率,在乘上同时使用系数即得负荷值

(2) 在旁边地方画一个风盘,cx修改风盘的参数(可以一层风盘的负荷值都用这一个风盘负荷值来代替)

(3) 画一个给水,一条排水管,选自动设备连管

(4) 选 水管——分支计算,点最下方管出“初算”结果

(5) 让比摩阻降下来,按流速计算,改部分管径值(尤其是最末端管,放大些)

(6) 点重新计算,没什么问题就标注

48. 回头再检查一遍:想想工人拿到我的图怎样理解每个位置

想想我是不是都表达清楚了

随便取一小块,看看我知不知道这能不能安装在别的位置

49. 只有自动排气阀的立管 DN20

冷凝水管 de25 (de32)? i=0.003

地漏de25

平面图上自动排气阀在给水管上? DN15(户内)

末端截止阀? DN25

泄水阀(管)DN50? (热力入口)

排污阀? DN50 (热力入口)

旁通阀 DN80

热力入口自动排气阀DN20

50. 每个FP 都要一个电动二通阀

热能表、自力式压差控制阀每户一个

51. 立管高度低于60m一般不用补偿

延长量=t*l*线性伸缩系数

线性伸缩系数取0.012

如果不作补偿,热胀冷缩,立管太长,容易把水表扯下来或是漏水

一般把延长量控制在2cm以下

施工温差在3℃左右

33(3m层高*11层)*55*0.012=21.78=2cm

52. 波纹补偿器可以放在楼层面上方,便于检修

53. 算负荷:

(1) 用负荷工具条中房间管理算出每个房间、外墙、窗大小,记下来

(2) 负荷计算中创建,该气象参数,一定要选在“新规范《GB50736-2012》气象参数”上

(3) 改维护材料结构(看节能书最下面汇总的K值,注意区分冬夏季,冬天的可以和节能书上不一致,夏天的一定要和节能书上的一致)

(4) 25#——楼层属性——选关联层、关键层、相同层

(5) 改完一定要按刷新数据(注意设层高)

(6) 每个房间改名称(体现功能)

相同房间要汇总,该房间面积,设备灯光不改(随意),人员取0.03人/m2,新风量取换气次数*h(即为单位面积新风)

54. 写在图纸材料表上的外墙、窗等材料取主要部分

55. 管线走线时注意顶板高、翻管等问题(还要有一定的预留空间)

56. 窗户LC2418指宽24 高18

57. Kv就是算出来的流量

Kvs流量系数,指阀门两端压差为0.1MPa,水密度为1g/cm2,阀门全开时的流量是调节阀的重要参数,反映调节阀的容量

58. 风机盘管水流量:根据风盘标称的供冷量除1.163再除5得出来标准水流量

59. CAD去水印的方法:

法一:导成pdf的cad。首先另存为dxf格式,再打开这个dxf格式的文件,点击打印——打印机(cad to pdf)——打印样式(monochrome.ctb)——图纸尺寸(若是加长版,在 特性 中自定义图纸尺寸)——打印范围(窗口)——居中打印——预览

法二:乱刀小软件。命令ap——最上方的框内选择BladeR18-x64.arx 文件——点击加载

——加载成功以后再打印,就没有印戳了

所谓BIN气象参数,就是根据某地全年室外干球温度的逐时值,统计出一定间隔的温度段(BIN)

中的温度在全年或某一期间所出现的小时数,即温度的时间频率。

BIN气象参数的应用范围很广,它可以被用来做建筑物的全年能耗分析,可以作为空调自控系统的

设计依据,可以用来分析热泵机组(空冷)和冷却塔的热工性能,也可用在空调运行管理之中。在选

择设备、设计系统时,一般都是依据设计负荷(或高峰负荷)来确定容量和匹配。但高峰负荷在一年

中出现时间很少,大部分时间里设备或系统都是在部分负荷下运行。因此,在进行长期的能量分析或

进行设备、系统的动态特性研究时,就必须要考虑负荷出现的频率和分布。而用BIN参数作为这方面

研究工作的基础数据,是十分相宜的。

BIN方法,是在度日法基础上发展起来的。是在不同的室外干球温度条件下完成负荷计算,并将计算结果乘以各温度段(BIN)出现的小时数,便可得全年的计算负荷。

要得到BIN气象参数,首先必须生成典型气象年TMY(Typical Meteorological Year)的全年气象参

数。我国北京、上海、成都、重庆和济南等已经生成了典型气象年TMY的气象参数,但在大部分地区尚未

生成。这为该方法的在国内的广泛应用带来了很大的不利因素。

一般来说,大部分建筑物并不是全年365天、每天24小时都需要空调,因而需要按照实际建筑物的空

调设备的使用情况给出相对应的BIN参数。

计算年负荷时,为了简化计算作如下设:设围护结构负荷(包括温差传热和日射得热)和新风、

渗透风负荷与室外温度有着线性关系。

1.两个与建筑能耗有关的代表温度:

(l)高峰热负荷温度(Peak Heating,Tph):该地区最高温度段的代表温度(中点温度)。上海地区为36℃。

(2)高峰冷负荷温度(Peak Cooling, Tpc):该地区最低温度段的代表温度(中点温度)。上海地区为-6℃。

2.建筑传导负荷的计算

传导负荷由两部分组成:(a)通过屋面、墙体、玻璃窗的由温差引起的稳定传热部分; (b)通过屋面、

墙体由投射在外表面上的日射引起的不稳定传热部分。这两部分可分别用式(1)和式(2)来计算:

式中:TCL,THL —— 分别为夏季、冬季由温差引起的传导负(W/㎡);

n —— 建筑物的传导表面数;

Ai —— 第i个表面(或玻璃窗)的面积(㎡);

Ki —— 第i个表面(或玻璃窗)的传热系数(W/(㎡·℃));

T —— 室外气温(℃);

Ti —— 室内设定温度(℃);

Af —— 建筑物的空调面积(㎡)

式中:TSCL —— 日射形成的传导负荷,7月份和1月份的分别记作SCL7和TSCL1 (W/㎡);

CLTDS —— 日射形成的墙体冷负荷温差(℃);参见附录一;

FPS —— 月平均日照率;上海地区夏季取0.60,冬季取0.48;

KC —— 墙体外表面颜色修正系数;

利用式(2)可建立TSCL与室外气温T之间的线性关系:

TSCL=M(T-Tph)+TSCL1 式(3)

式中: M=(TSCL7-TSCL1)/(Tpc-Tph)

3.日射负荷:

式中:SCL —— 平均日射负荷。7月份和1月份的分别记作SCL7和SCL1(W/㎡);

n —— 建筑物所有外窗的朝向数;

MSHGFi —— 朝向i 的最大日射得热因数(W/㎡),见附录二;

i —— 朝向i 的窗的总面积(㎡);

SCi —— 朝向i 的遮阳系数;

CLFTi —— 朝向i 的24小时日射冷负荷系数之和,见附录三;

FPS —— 月平均日照率;

t —— 空调系统日运行小时数(h);一般,夏季t=10小时;

Af —— 建筑物的空调面积(㎡);

SCL与室外气温T之间存在如下的线性关系:

SCL=M(T-Tph)+SCL1 式(5)

式中: M=(SCL7-SCL1)/(Tpc-Tph)

4.内部负荷:

式中: AU —— 同时系数;

CLImax —— 设备和照明的最大负荷或房间内最大人数时的人体散热;

CLImax的计算:

(1)人体散热按下式计算: Q=φnq 式(7)

式中:φ —— 群集系数;

n —— 计算时刻空调房间内的总人数;

q —— 一名成年男子全热散热量;

人体散热的同时系数AU,可根据实际情况酌情取之。在本生态办公楼中取1.0,群集系数取0.96;

(2)照明散热按下式计算:

(a)镇流器在空调房间内的荧光灯:

Q=1200N 式(8)

(b)暗装在吊顶玻璃罩内的荧光灯:

Q=1000n0N 式(9)

式中:N —— 照明设备的安装功率,kW;

n0 —— 考虑玻璃反射,顶棚内通风情况的系数,当荧光灯罩有小孔,

利用自然通风散热于顶棚内时,取为0.5~0.6,荧光灯罩无通风孔时,视顶棚内通风情

况取为0.6~0.8。

照明的同时系数AU,一般为0.5~1.0,在本生态办公楼中取0.9。

5.新风负荷:

CLV=0.34V(i-ii)/Af 式(10)

式中:V —— 新风量(m³/h);

i —— 对应于各温度频段的室外空气焓值(kJ/kg);

ii —— 室内空气设计焓值(kJ/kg);